Skip to main content

Effective Risk Management as a Mediator to Enhance the Success of Construction Projects

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems (ICETIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 584))

Abstract

Risk management is seen as a critical organizational capability for gaining a competitive advantage in the construction sector. The importance of risk management in minimizing the impacts of external risk factors in construction projects, and therefore achieving project success, was investigated in this study. Using partial least squares structural equation modelling and survey data from 348 project members in oil and gas construction projects, the study statistically examined the relationships between external risk variables and project success. The findings show that, in cases where risk management plays a mediating role, effective risk management can minimize the influence of external risk factors on project success and, as a result, improve construction project success. Time overruns have the most significant impact on project performance, with a factor loading of 0.842, while risk analysis is the essential phase, with a factor loading of 0.851. In terms of risk management, the study contributes to closing a gap in knowledge on how external risk mitigation may help a construction project succeed. In contrast to the usual technique of establishing a sophisticated management system, it also gives new theoretical recommendations for employing project risk management to promote integration in construction companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement.

The data sets during and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Serpella, A.F., Ferrada, X., Howard, R., Rubio, L.: Risk management in construction projects: A knowledge-based approach. Proc. Soc. Behav. Sci. 119, 653–662 (2014). https://doi.org/10.1016/j.sbspro.2014.03.073

    Article  Google Scholar 

  2. Analytica, O.: Oil sector damage will slow Yemen’s recovery. Oxford Analytica (2015). https://doi.org/10.1108/OXAN-DB199870

    Article  Google Scholar 

  3. Yemen Central Bank: Annual_report 2013_EN centeral bank of yemen. Central Bank of Yemen, p. 126 (2013)

    Google Scholar 

  4. Ismail, A.: Yemen Oil Economic Importance. Arab Oil & Natural Gas (2017)

    Google Scholar 

  5. Ashley, D.B., Bonner, J.J.: Political risks in international construction. J. Constr. Eng. Manage. 113(3), 447–467 (1987). https://doi.org/10.1061/(ASCE)0733-9364(1987)113:3(447)

    Article  Google Scholar 

  6. Chang, T., Hwang, B.G., Deng, X., Zhao, X.: Identifying political risk management strategies in international construction projects. Adv. Civ. Eng. 2018, 1–11 (2018). https://doi.org/10.1155/2018/1016384

    Article  Google Scholar 

  7. Kassem, M.A., Khoiry, M.A., Hamzah, N.: Using probability impact matrix (PIM) in analyzing risk factors affecting the success of oil and gas construction projects in Yemen. Int. J. Energy Sect. Manage. 14(3), 527–546 (2019). https://doi.org/10.1108/IJESM-03-2019-0011

    Article  Google Scholar 

  8. Taofeeq, D.M., Adeleke, A.Q., Lee, C.-K.: Individual factors influencing contractors’ risk attitudes among Malaysian construction industries: The moderating role of government policy. Int. J. Constr. Manage. 22, 612–631 (2019). https://doi.org/10.1080/15623599.2019.1641888

    Article  Google Scholar 

  9. Eskander, R.F.A.: Risk assessment influencing factors for Arabian construction projects using analytic hierarchy process. Alex. Eng. J. 57(4), 4207–4218 (2018). https://doi.org/10.1016/j.aej.2018.10.018

    Article  Google Scholar 

  10. Bahamid, R.A., Doh, S.I., Al-Sharafi, M.A., Rahimi, A.R.: Risk factors influencing the construction projects in Yemen from expert’s perspective. IOP Conf. Ser. Mater. Sci. Eng. 712(1), 012007 (2020). https://doi.org/10.1088/1757-899X/712/1/012007

  11. Adeleke, A.Q.Q., et al.: The influence of organizational external factors on construction risk management among Nigerian construction companies. Saf. Health Work 9(1), 115–124 (2017). https://doi.org/10.1016/j.shaw.2017.05.004

    Article  Google Scholar 

  12. Niu, Y.: The performance and problems of affordable housing policy in China: The estimations of benefits, costs and affordability. Int. J. Housing Mark. Anal. 1(2), 125–146 (2008). https://doi.org/10.1108/17538270810877763

    Article  Google Scholar 

  13. Adeleke, A.Q., Bahaudin, A.Y., Kamaruddeen, A.M.: Moderating effect of regulations on organizational factors and construction risk management : A proposed framework. Int. J. Econ. Financ. 6(2004), 92–97 (2016)

    Google Scholar 

  14. Kassem, M.A., Khoiry, M.A., Hamzah, N.: Risk factors in oil and gas construction projects in developing countries: A case study. Int. J. Energy Sect. Manage. 13(4), 846–861 (2019). https://doi.org/10.1108/IJESM-11-2018-0002

    Article  Google Scholar 

  15. Badiru, A., Osisanya, S.: Project Management for the Oil and Gas Industry, vol. 20131057. CRC Press (2013). https://doi.org/10.1201/b13755

  16. Baloi, D., Price, A.D.F.: Modelling global risk factors affecting construction cost performance. Int. J. Project Manage. 21(4), 261–269 (2003). https://doi.org/10.1016/S0263-7863(02)00017-0

    Article  Google Scholar 

  17. Badiru, A.B., Osisanya, S.O., El-Reedy, M.A.: Project management for the oil and gas industry. Proj. Manage. Oil Gas Indus. 20131057, 339 (2016). https://doi.org/10.1201/b13755

  18. Al-Sabah, R., Menassa, C.C., Hanna, A.: Evaluating impact of construction risks in the Arabian Gulf Region from perspective of multinational architecture, engineering and construction firms. Constr. Manage. Econ. 32(4), 382–402 (2014). https://doi.org/10.1080/01446193.2014.884281

    Article  Google Scholar 

  19. Van Thuyet, N., Ogunlana, S.O., Dey, P.K., Kumar Dey, P.: Risk management in oil and gas construction projects in Vietnam. Int. J. Ener. Sec. Manage. 1(2), 175–194 (2007). https://doi.org/10.1108/17506220710761582

    Article  Google Scholar 

  20. Eldosouky, I.A., Ibrahim, A.H., Mohammed, H.E.D.: Management of construction cost contingency covering upside and downside risks. Alex. Eng. J. 53(4), 863–881 (2014). https://doi.org/10.1016/j.aej.2014.09.008

    Article  Google Scholar 

  21. Ruqaishi, M., Bashir, H.A.: Causes of delay in construction projects in the oil and gas industry in the Gulf Cooperation Council countries : A case study. J. Manage. Eng. 31(3), 1–8 (2013). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000248

    Article  Google Scholar 

  22. Al Subaih, A.: A Framework for Implementation of IPD Principles in Oil & Gas Projects (2016)

    Google Scholar 

  23. Berends, K.: Engineering and construction projects for oil and gas processing facilities: Contracting, uncertainty and the economics of information. Ener. Pol. 35(8), 4260–4270 (2007). https://doi.org/10.1016/j.enpol.2007.02.027

    Article  Google Scholar 

  24. Salama, M., Hamid, M., Keogh, B.: Investigating the causes of delay within oil and gas projects in the UAE. In: Proceedings 24th Annual ARCOM Conference, pp. 819–827 (2008)

    Google Scholar 

  25. Fallahnejad, M.H.: Delay causes in Iran gas pipeline projects. Int. J. Project Manage. 31(1), 136–146 (2013). https://doi.org/10.1016/j.ijproman.2012.06.003

    Article  Google Scholar 

  26. Kassem, M.A., Khoiry, M.A., Hamzah, N.: Theoretical review on critical risk factors in oil and gas construction projects in Yemen. Eng. Constr. Archit. Manage. 28(4), 934–968 (2020). https://doi.org/10.1108/ECAM-03-2019-0123

    Article  Google Scholar 

  27. Kassem, M.A., Khoiry, M.A., Hamzah, N.: Assessment of the effect of external risk factors on the success of an oil and gas construction project. Eng. Constr. Archit. Manage. 27(9), 2767–2793 (2020). https://doi.org/10.1108/ECAM-10-2019-0573

    Article  Google Scholar 

  28. Hosny, H.E., Ibrahim, A.H., Fraig, R.F.: Risk management framework for continuous flight auger piles construction in Egypt. Alex. Eng. J. 57(4), 2667–2677 (2018). https://doi.org/10.1016/j.aej.2017.10.003

    Article  Google Scholar 

  29. Othman, I., Shafiq, N., Nuruddin, M.F.: A review of risk management process in construction projects of developing countries related content effective safety management in construction project. In: IOP Conference Series: Materials Science and Engineering, p. 271 (2017). https://doi.org/10.1088/1757-899X/271/1/012042

  30. Goh, C., Abdul-Rahman, H., Abdul, Z.: Applying risk management workshop for a public construction project: Case study. J. Constr. Eng. Manage. 139(5), 572–580 (2013). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000599

    Article  Google Scholar 

  31. Sabri, H.A.R., Rahim, A.R.A., Yew, W.K., Ismail, S.: Project management in oil and gas industry: A review. Innov. Manage. Sustain. Econ. Compet. Adv. 1–6, 1823–1832 (2015)

    Google Scholar 

  32. Wang, C.M., Xu, B.B., Zhang, S.J., Chen, Y.Q.: Influence of personality and risk propensity on risk perception of Chinese construction project managers. Int. J. Project Manage. 34(7), 1294–1304 (2016). https://doi.org/10.1016/j.ijproman.2016.07.004

    Article  Google Scholar 

  33. Sekaran, U., Bougie, R.: Research Methods for Business: A Skill-Building Approach. Wiley (2010)

    Google Scholar 

  34. Weston, R., Gore, P.A.: A brief guide to structural equation modeling. Couns. Psychol. 34(5), 719–751 (2006). https://doi.org/10.1177/0011000006286345

    Article  Google Scholar 

  35. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate data analysis. Vectors 417, 280–290 (2010). https://doi.org/10.1016/j.ijpharm.2011.02.019

    Article  Google Scholar 

  36. Hair, J.F., Hult, G.T.M., Ringle, C., Sarstedt, M.: A primer on partial least squares structural equation modeling (PLS-SEM). Long Range Plan. 46, 184–185 (2014). https://doi.org/10.1016/j.lrp.2013.01.002

    Article  MATH  Google Scholar 

  37. Hair, J.F., Ringle, C.M., Sarstedt, M.: Partial least squares: The better approach to structural equation modeling? Long Range Plan. 45(5–6), 312–319 (2012). https://doi.org/10.1016/j.lrp.2012.09.011

    Article  Google Scholar 

  38. Esposito, V., Chin, W.W., Henseler, J., Wang, H.: Handbook of Partial Least Squares: Concepts, Methods and Applications. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16345-6

    Book  MATH  Google Scholar 

  39. Haenlein, M., Kaplan, A.M.: A beginner’s guide to partial least squares analysis. Underst. Stat. 3(4), 2005–2006 (2007). https://doi.org/10.1207/s15328031us0304

    Article  Google Scholar 

  40. Henseler, J., Ringle, C.M., Sinkovics, R.R.: The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 20(2009), 277–319 (2009). https://doi.org/10.1108/S1474-7979(2009)0000020014

    Article  Google Scholar 

  41. Henseler, J., Ringle, C.M., Sarstedt, M.: Using partial least squares path modeling in advertising research: Basic concepts and recent issues. In: Handbook of Research on International Advertising, Edward Elgar (2012)

    Google Scholar 

  42. Afthanorhan, W.M.A.B.W.: A comparison of partial least square structural equation modeling (PLS-SEM) and covariance based structural equation modeling (CB-SEM) for confirmatory factor analysis. Int. J. Eng. Sci. Innov. Technol. 2(5), 198–205 (2013)

    Google Scholar 

  43. Sarstedt, M., Hair, J.F., Ringle, C.M., Thiele, K.O., Gudergan, S.P.: Estimation issues with PLS and CBSEM: Where the bias lies! J. Bus. Res. 69(10), 3998–4010 (2016). https://doi.org/10.1016/j.jbusres.2016.06.007

    Article  Google Scholar 

  44. Lohmöller, J.-B.: Predictive vs. structural modeling: PLS vs. ML. Latent Var. Path Model. Partial Least Squar. 1983, 199–226 (1989). https://doi.org/10.1007/978-3-642-52512-4_5

    Article  Google Scholar 

  45. Hulland, J.S.: Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strat. Manage. J. 20(4), 195–204 (1999)

    Article  Google Scholar 

  46. Litwin: How to Measure Survey Reliability and Validity (1995). https://books.google.com.my/books?hl=en&lr=&id=t9dyAwAAQBAJ&oi=fnd&pg=PP1&dq=Litwin+(1995)+&ots=zRxUEudDC1&sig=387w7xnSbvM5mG0BNmjeJdGwUqM&redir_esc=y#v=onepage&q=Litwin(1995)&f=false. Accessed 2 Apr 2020

  47. Chin, W.W.: The partial least squares approach to structural equation modeling. Mod. Meth. Bus. Res. 295(2), 295–336 (1998). https://doi.org/10.1016/j.aap.2008.12.010

    Article  Google Scholar 

  48. Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: Indeed a silver bullet. J. Market. Theory Pract. 19(2), 139–152 (2011). https://doi.org/10.2753/MTP1069-6679190202

    Article  Google Scholar 

  49. Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18(1), 39–50 (1981). https://doi.org/10.1177/002224378101800104

    Article  Google Scholar 

  50. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Routledge, pp. 1–3 (1988) https://doi.org/10.4324/9780203771587

  51. Selya, A.S., Rose, J.S., Dierker, L.C., Hedeker, D., Mermelstein, R.J.: A practical guide to calculating Cohen’s f 2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 1–6 (2012). https://doi.org/10.3389/fpsyg.2012.00111

    Article  Google Scholar 

  52. Cohen, U., Callaghan, W., Ringle, C.M.: Exploring Causal Path Directionality for a Marketing Model (2007)

    Google Scholar 

  53. Kassem, M.A., Khoiry, M.A., Hamzah, N.: Structural modelling of internal risk factors for oil and gas construction projects. Int. J. Energy Sect. Manage. 14(5), 975–1000 (2020). https://doi.org/10.1108/IJESM-11-2019-0022

    Article  Google Scholar 

  54. Yirenkyi-Fianko, A.B., Chileshe, N.: An analysis of risk management in practice: The case of Ghana’s construction industry. J. Eng. Des. Technol. 13(2), 240–259 (2015). https://doi.org/10.1108/JEDT-04-2012-0021

    Article  Google Scholar 

  55. Rostami, A., Oduoza, C.F.: Key risks in construction projects in Italy: Contractors’ perspective. Eng. Constr. Archit. Manage. 24(3), 451–462 (2017). https://doi.org/10.1108/ECAM-09-2015-0142

    Article  Google Scholar 

  56. Adeleke, A.Q., Bahaudin, A.Y., Kamaruddeen, A.M., Bamgbade, J.A., Ali, M.W.: An empirical analysis of organizational external factors on construction risk management. Int. J. Suppl. Chain Manage. 8(1), 932 (2019)

    Google Scholar 

  57. Jin, X., Zhang, G., Liu, J., Feng, Y., Zuo, J.: Major participants in the construction industry and their approaches to risks: A theoretical framework. Proc. Eng. 182, 314–320 (2017). https://doi.org/10.1016/j.proeng.2017.03.100

    Article  Google Scholar 

  58. Zhao, X., Singhaputtangkul, N.: Effects of firm characteristics on enterprise risk management: Case study of Chinese construction firms operating in Singapore. J. Manage. Eng. 32(4), 050106008 (2016). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000434

    Article  Google Scholar 

  59. Sohrabinejad, A., Rahimi, M.: Risk determination, prioritization, and classifying in construction project case study: Gharb Tehran commercial-administrative complex. J. Constr. Eng. 2015, 1 (2015). https://doi.org/10.1155/2015/203468

    Article  Google Scholar 

  60. Alfadil, M.O., Kassem, M.A., Ali, K.N., Alaghbari, W.: Construction industry from perspective of force majeure and environmental risk compared to the COVID-19 outbreak: A systematic literature review. Sustainability 14(3), 1135 (2022). https://doi.org/10.3390/SU14031135

    Article  Google Scholar 

  61. Ghaleb, H., Alhajlah, H.H., Bin Abdullah, A.A., Kassem, M.A., Al-Sharafi, M.A.: A scientometric analysis and systematic literature review for construction project complexity. Buildings 12(4), 412–482 (2022). https://doi.org/10.3390/buildings12040482

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universiti Teknologi Malaysia (UTM) Research Grant Vot No: J130000.7113.05E79 for supporting this research and providing research facilities.

Funding

This research was funded by Universiti Teknologi Malaysia (UTM) Research Grant Vot No: J130000.7113.05E79.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar A. Kassem .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kassem, M.A., Ali, K.N. (2023). Effective Risk Management as a Mediator to Enhance the Success of Construction Projects. In: Al-Sharafi, M.A., Al-Emran, M., Al-Kabi, M.N., Shaalan, K. (eds) Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems. ICETIS 2022. Lecture Notes in Networks and Systems, vol 584. Springer, Cham. https://doi.org/10.1007/978-3-031-25274-7_15

Download citation

Publish with us

Policies and ethics