Skip to main content

Heterogeneous Objectives: State-of-the-Art andĀ Future Research

  • Chapter
  • First Online:
Many-Criteria Optimization and Decision Analysis

Part of the book series: Natural Computing Series ((NCS))

Abstract

Multiobjective optimization problems with heterogeneous objectives are defined as those that possess significantly different types of objective function components (not just incommensurable in units or scale). For example, in a heterogeneous problem the objective function components may differ in formal computational complexity, practical evaluation effort (time, costs, or resources), determinism (stochastic vs deterministic), or some combination of all three. A particularly challenging variety of heterogeneity may occur by the combination of a time-consuming laboratory-based objective with other objectives that are evaluated using faster computer-based calculations. Perhaps more commonly, all objectives may be evaluated computationally, but some may require a lengthy simulation process while others are computed from a relatively simple closed-form calculation. In this chapter, we motivate the need for more work on the topic of heterogeneous objectives (with reference to real-world examples), expand on a basic taxonomy of heterogeneity types, and review the state of the art in tackling these problems. We give special attention to heterogeneity in evaluation time (latency) as this requires sophisticated approaches. We also present original experimental work on estimating the amount of heterogeneity in evaluation time expected in many-objective problems, given reasonable assumptions, and survey related research threads that could contribute to this area in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solutions evaluated on the fast objective are considered for evaluation on the slow objective in the next generation if they outperform at least one of their parents on the fast objective.

References

  1. P.D. Allison, Missing Data (Sage publications, 2001)

    Google ScholarĀ 

  2. R.Ā Allmendinger, Tuning evolutionary search for closed-loop optimization. Ph.D. thesis, The University of Manchester, UK (2012)

    Google ScholarĀ 

  3. R. Allmendinger, M.T.M. Emmerich, J. Hakanen, Y. Jin, E. Rigoni, Surrogate-assisted multicriteria optimization: complexities, prospective solutions, and business case. J. Multi-Criteria Decis. Anal. 24(1ā€“2), 5ā€“24 (2017)

    ArticleĀ  Google ScholarĀ 

  4. R.Ā Allmendinger, S.Ā Gerontas, N.J. Titchener-Hooker, S.S. Farid, Tuning evolutionary multiobjective optimization for closed-loop estimation of chromatographic operating conditions, in Parallel Problem Solving from Nature (PPSN) (Springer, 2014), pp. 741ā€“750

    Google ScholarĀ 

  5. R. Allmendinger, J. Handl, J.D. Knowles, Multiobjective optimization: when objectives exhibit non-uniform latencies. Eur. J. Oper. Res. 243(2), 497ā€“513 (2015)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. R.Ā Allmendinger, J.D. Knowles, Evolutionary search in lethal environments, in International Conference on Evolutionary Computation Theory and Applications (SciTePress, 2011), pp. 63ā€“72

    Google ScholarĀ 

  7. R.Ā Allmendinger, J.D. Knowles, ā€˜Hang on a minuteā€™: investigations on the effects of delayed objective functions in multiobjective optimization, in Evolutionary Multi-criterion Optimization (EMO) (Springer, 2013), pp. 6ā€“20

    Google ScholarĀ 

  8. R. Allmendinger, J.D. Knowles, On handling ephemeral resource constraints in evolutionary search. Evol. Comput. 21(3), 497ā€“531 (2013)

    ArticleĀ  Google ScholarĀ 

  9. J.Ā Azimi, A.Ā Fern, X.Z. Fern, Batch bayesian optimization via simulation matching, in Neural Information Processing Systems (NIPS) (2010), pp. 109ā€“117

    Google ScholarĀ 

  10. D. Bertsimas, M. Sim, M. Zhang, Adaptive distributionally robust optimization. Manag. Sci. 65(2), 604ā€“618 (2019)

    ArticleĀ  Google ScholarĀ 

  11. D. Brockhoff, E. Zitzler, Objective reduction in evolutionary multiobjective optimization: Theory and applications. Evolutionary computation 17(2), 135ā€“166 (2009)

    ArticleĀ  Google ScholarĀ 

  12. P. Brucker, A. Drexl, R. Mƶhring, K. Neumann, E. Pesch, Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3ā€“41 (1999)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  13. L.Ā Cervante, B.Ā Xue, M.Ā Zhang, L.Ā Shang, Binary particle swarm optimisation for feature selection: a filter based approach, in Congress on Evolutionary Computation (CEC) (IEEE Press, 2012), pp. 1ā€“8

    Google ScholarĀ 

  14. R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773ā€“791 (2016)

    ArticleĀ  Google ScholarĀ 

  15. T.Ā Chugh, R.Ā Allmendinger, V.Ā Ojalehto, K.Ā Miettinen, Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies, in Genetic and Evolutionary Computation Conference (GECCO) (ACM Press, 2018), pp. 609ā€“616

    Google ScholarĀ 

  16. T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, K. Sindhya, A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129ā€“142 (2018)

    ArticleĀ  Google ScholarĀ 

  17. G.Ā Eichfelder, X.Ā Gandibleux, M.J. Geiger, J.Ā Jahn, A.Ā Jaszkiewicz, J.D. Knowles, P.K. Shukla, H.Ā Trautmann, S.Ā Wessing, Heterogeneous functions (WG3), in Understanding Complexity in Multiobjective Optimization (Dagstuhl Seminar 15031) (Dagstuhl Zentrum fĆ¼r Informatik, 2015), pp. 121ā€“129

    Google ScholarĀ 

  18. P.J. GarcĆ­a-Laencina, J.-L. Sancho-GĆ³mez, A.R. Figueiras-Vidal, Pattern classification with missing data: a review. Neural Comput. Appl. 19(2), 263ā€“282 (2010)

    ArticleĀ  Google ScholarĀ 

  19. C. Gerth, P. Weidner, Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67(2), 297ā€“320 (1990)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. D. Ginsbourger, J. Janusevskis, R. Le Riche, Dealing with asynchronicity in parallel Gaussian Process based global optimization Research report, Ecole de Mines Saint-Etienne, France (2011)

    Google ScholarĀ 

  21. J.Ā GonzĆ”lez, Z.Ā Dai, P.Ā Hennig, N.D. Lawrence, Batch Bayesian Optimization via Local Penalization, in Artificial Intelligence and Statistics (AISTATS) (2016), pp. 648ā€“657. JMLR.org

    Google ScholarĀ 

  22. S.Ā Greco, K.Ā Klamroth, J.D. Knowles, G.Ā Rudolph (eds.) Understanding Complexity in Multiobjective Optimization (Dagstuhl Seminar 15031), Dagstuhl Reports, vol. 5(1). Schloss Dagstuhlā€“Leibniz-Zentrum fĆ¼r Informatik, Germany (2015)

    Google ScholarĀ 

  23. T.Ā Jansen, C.Ā Zarges, Fixed budget computations: a different perspective on run time analysis, in Genetic and Evolutionary Computation Conference (GECCO) (ACM Press, 2012), pp. 1325ā€“1332

    Google ScholarĀ 

  24. D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455ā€“492 (1998)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  25. V.V. Kalashnikov, Mathematical Methods in Queuing Theory (Springer, 1994)

    Google ScholarĀ 

  26. Y.Ā Kim, R.Ā Allmendinger, M.Ā LĆ³pez-IbƔƱez, Safe learning and optimization techniques: Towards a survey of the state of the art, in Trustworthy AI ā€“ Integrating Learning, Optimization and Reasoning (TAILOR) (Springer, 2020), pp. 123ā€“139

    Google ScholarĀ 

  27. J.D. Knowles, Closed-loop evolutionary multiobjective optimization. IEEE Comput. Intell. Mag. 4, 77ā€“91 (2009)

    ArticleĀ  Google ScholarĀ 

  28. J.D. Knowles, D.Ā Corne, Instance generators and test suites for the multiobjective quadratic assignment problem, in Evolutionary Multi-criterion Optimization (EMO) (Springer, 2003), pp. 295ā€“310

    Google ScholarĀ 

  29. A.Ā Lewis, S.Ā Mostaghim, I.Ā Scriven, Asynchronous multi-objective optimisation in unreliable distributed environments, in Biologically-Inspired Optimisation Methods (Springer, 2009), pp. 51ā€“78

    Google ScholarĀ 

  30. R.J. Little, D.B. Rubin, Statistical Analysis with Missing Data (Wiley, 2019)

    Google ScholarĀ 

  31. D.G. Malcolm, J.H. Roseboom, C.E. Clark, W. Fazar, Application of a technique for research and development program evaluation. Oper. Res. 7(5), 646ā€“669 (1959)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  32. O.Ā Mersmann, B.Ā Bischl, H.Ā Trautmann, M.Ā Preuss, C.Ā Weihs, G.Ā Rudolph, Exploratory landscape analysis, in Genetic and Evolutionary Computation Conference (GECCO) (ACM Press, 2011), pp. 829ā€“836

    Google ScholarĀ 

  33. S. Oā€™Hagan, W.B. Dunn, M. Brown, J.D. Knowles, D.B. Kell, Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal. Chem. 77(1), 290ā€“303 (2005)

    ArticleĀ  Google ScholarĀ 

  34. S. Oā€™Hagan, W.B. Dunn, J.D. Knowles, D. Broadhurst, R. Williams, J.J. Ashworth, M. Cameron, D.B. Kell, Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal. Chem. 79(2), 464ā€“476 (2007)

    ArticleĀ  Google ScholarĀ 

  35. L.Ā Orseau, S.Ā Armstrong, Safely interruptible agents, in Conference on Uncertainty in Artificial Intelligence (AUAI Press, 2016), pp. 557ā€“566

    Google ScholarĀ 

  36. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345ā€“1359 (2009)

    ArticleĀ  Google ScholarĀ 

  37. L. Paquete, T. StĆ¼tzle, A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943ā€“959 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  38. M. Platt, W. Rowe, D.C. Wedge, D.B. Kell, J.D. Knowles, P.J.R. Day, Aptamer evolution for array-based diagnostics. Anal. Biochem. 390(2), 203ā€“205 (2009)

    ArticleĀ  Google ScholarĀ 

  39. R.C. Purshouse, P.J. Fleming, On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evolut. Comput. 11(6), 770ā€“784 (2007)

    ArticleĀ  Google ScholarĀ 

  40. E.O. Scott, K.A. DeĀ Jong, Evaluation-time bias in asynchronous evolutionary algorithms, in Genetic and Evolutionary Computation Conference (GECCO) (ACM Press, 2015), pp. 1209ā€“1212

    Google ScholarĀ 

  41. J.Ā Snoek, H.Ā Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in Neural Information Processing Systems (NIPS) (2012), pp. 2951ā€“2959

    Google ScholarĀ 

  42. M. Tabatabaei, J. Hakanen, M. Hartikainen, K. Miettinen, K. Sindhya, A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. Struct. Multidiscip. Optim. 52(1), 1ā€“25 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  43. E.-G. Talbi, S.Ā Mostaghim, T.Ā Okabe, H.Ā Ishibuchi, G.Ā Rudolph, C.A.C. Coello, Parallel approaches for multiobjective optimization, in Multiobjective Optimization (Springer, 2008), pp. 349ā€“372

    Google ScholarĀ 

  44. J.Ā Thomann, A trust region approach for multi-objective heterogeneous optimization. Ph.D. thesis, Technische UniversitƤt Ilmenau, Germany, Ilmenau, Germany (2019)

    Google ScholarĀ 

  45. J. Thomann, G. Eichfelder, Numerical results for the multiobjective trust region algorithm MHT. Data in Brief 25, 1ā€“18 (2019)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  46. J. Thomann, G. Eichfelder, Representation of the Pareto front for heterogeneous multi-objective optimization. J. Appl. Numer. Optim 1(3), 293ā€“323 (2019)

    Google ScholarĀ 

  47. J. Thomann, G. Eichfelder, A trust-region algorithm for heterogeneous multiobjective optimization. SIAM J. Optim. 29(2), 1017ā€“1047 (2019)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  48. L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a comparative review. J. Mach. Learn Res. 10(66ā€“71), 13 (2009)

    Google ScholarĀ 

  49. X. Wang, Y. Jin, S. Schmitt, M. Olhofer, An adaptive bayesian approach to surrogate-assisted evolutionary multi-objective optimization. Inf. Sci. 519, 317ā€“331 (2020)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  50. X.Ā Wang, Y.Ā Jin, S.Ā Schmitt, M.Ā Olhofer, Transfer learning for Gaussian process assisted evolutionary bi-objective optimization for objectives with different evaluation times, in Genetic and Evolutionary Computation Conference (GECCO) (ACM Press, 2020), pp. 587ā€“594

    Google ScholarĀ 

  51. M.Ā Yagoubi, L.Ā Thobois, M.Ā Schoenauer, Asynchronous evolutionary multi-objective algorithms with heterogeneous evaluation costs, in Congress of Evolutionary Computation (CEC) (IEEE Press, 2011), pp. 21ā€“28

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Allmendinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allmendinger, R., Knowles, J. (2023). Heterogeneous Objectives: State-of-the-Art andĀ Future Research. In: Brockhoff, D., Emmerich, M., Naujoks, B., Purshouse, R. (eds) Many-Criteria Optimization and Decision Analysis. Natural Computing Series. Springer, Cham. https://doi.org/10.1007/978-3-031-25263-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25263-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25262-4

  • Online ISBN: 978-3-031-25263-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics