Skip to main content

Using Homotopy Link Function with Lipschitz Threshold in Studying Synchronized Fluctuations in Hierarchical Models

  • Conference paper
  • First Online:
Advances in Discrete Dynamical Systems, Difference Equations and Applications (ICDEA 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 416))

Included in the following conference series:

  • 268 Accesses

Abstract

In this chapter, we use homotopy and Lipschitz concepts to study synchronization effects in a triangular discrete-time dynamical systems. We have generalized the previous results in this area by defining a new link function with Lipschitz threshold. Using this new link function we continuously deform the orbits of the original model into the coupled model such that we preserve qualitative properties such as stability and periodicity. We analytically obtain this Lipschitz synchronization threshold and we prove that for less than this threshold, two systems are completely synchronized, i.e. they eventually evolve identically in time. We apply this method to a one-dimensional Ricker type population model, whose trajectories as is well known, can be chaotic. We use some qualitative dynamical systems tools such as Poincare section, spectrum and time series to detect the chaotic dynamics and chaotic signals for different synchronization Lipschitz thresholds s and growth rates r. Finally, we numerically find the Lipschitz synchronization threshold for different growth rates using mean phase and amplitude differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assas, L., Elaydi, S., Kwessi, E., Livadiotis, G., Ribble, D.: Hierarchical competition models with Allee effects. J. Biol. Dyn., Taylor Fr. 9(sup1), 32–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Elaydi, S., Kwessi, E., Livadiotis, G.: Hierarchical competition models with the Allee effect III: multispecies. J. Biol. Dyn., Taylor Fr. 12(1), 271–287 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balreira, E.C., Elaydi, S., Luís, R.: Global dynamics of triangular maps. Nonlinear Anal.: Theory, Methods Appl., Elsevier 104, 75–83 (2014)

    Google Scholar 

  4. Best, J., Castillo-Chavez, C., Yakubu, A.-A.: Hierarchical competition in discrete time models with dispersal. Fields Inst. Commun. 36, 59–72 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Google Scholar 

  6. May, R.M.: Chaos and the dynamics of biological populations. Nucl. Phys. B-Proc. Suppl., Elsevier 2, 225–245 (1987)

    Google Scholar 

  7. Marotto, F.R.: Snap-back repellers imply chaos in Rn. J. Math. Anal. Appl. Elsevier 63(1), 199–223 (1978)

    Google Scholar 

  8. Marotto, F.R.: Chaotic behavior in the Hénon mapping. J. Math. Anal. Appl. Elsevier 68(2), 187–194 (1979)

    Google Scholar 

  9. Marotto, F.R.: On redefining a snap-back repeller. J. Math. Anal. Appl., Elsevier 25(1), 25–28 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC (2007)

    Google Scholar 

  11. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  12. Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems, vol. 69, issue 1, pp. 32–47. Oxford University Press, Oxford (1983)

    Google Scholar 

  13. Yamada, T., Fujisaka, H.: Stability theory of synchronized motion in coupled-oscillator systems. ii: the mapping approach. Prog. Theor. Phys. 70(5), 1240–1248 (1983)

    Google Scholar 

  14. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. APS 64(8), 821 (1990)

    Google Scholar 

  15. Balmforth, N.J., Jacobson, A., Provenzale, A.: Synchronized family dynamics in globally coupled maps. Chaos: Interdiscip. J. Nonlinear Sci., AIP 9(3), 738–754 (1999)

    Google Scholar 

  16. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos: Interdiscip. J. Nonlinear Sci., AIP 7(4), 520–543 (1997)

    Google Scholar 

  17. Azizi, T., Kerr, G.: Chaos synchronization in discrete-time dynamical systems with application in population dynamics. J. Appl. Math. Phys., Sci. Res. Publ. 8(3), 406–423 (2020)

    Article  Google Scholar 

  18. Azizi, T., Kerr, G.: Synchronized cycles of generalized Nicholson-bailey model. Am. J. Comput. Math., Sci. Res. Publ. 10(1), 147–166 (2020)

    Google Scholar 

  19. Blasius, B., Stone, L.: Chaos and phase synchronization in ecological systems. Int. J. Bifurc. Chaos, World Sci. 10(10), 2361–2380 (2000)

    Article  MATH  Google Scholar 

  20. Earn, D.J., Rohani, P., Grenfell, B.T.: Persistence, chaos and synchrony in ecology and epidemiology. Proc. R. Soc. London. Ser. B: Biol. Sci., R. Soc. 265(1390), 7–10 (1998)

    Google Scholar 

  21. Ricker, W.E.: Stock and recruitment. J. Fish. Board Can., NRC Res. Press 11(5), 559–623 (1954)

    Google Scholar 

  22. Luis, R., Elaydi, S., Oliveira, H.: Stability of a Ricker-type competition model and the competitive exclusion principle. J. Biol. Dyn., Taylor & Francis 5(6), 636–660 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mormann, F., Lehnertz, K., David, P., Elger, C.E.: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D: Nonlinear Phenom., Elsevier 144(3–4), 358–369 (2000)

    Google Scholar 

  24. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., Pennartz, C.M.: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, Elsevier 55(4), 1548–1565 (2011)

    Google Scholar 

  25. Daume, J., Gruber, T., Engel, A.K., Friese, U.: Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J. Neurosci., Soc Neurosci. 37(2), 313–322 (2017)

    Google Scholar 

  26. Lowet, E., Roberts, M.J., Bonizzi, P., Karel, J., De Weerd, P.: Quantifying neural oscillatory synchronization: a comparison between spectral coherence and phase-locking value approaches. PloS one Public Library of Science 11(1), e0146443 (2016)

    Google Scholar 

  27. Gambuzza, L.V., Gomez-Gardenes, J., Frasca, M.: Amplitude dynamics favors synchronization in complex networks. Sci. Rep. Nature Publishing Group 6(1), 24915 (2016)

    Google Scholar 

  28. Liu, H., Zhang, P.: Phase synchronization dynamics of neural network during seizures. Comput. Math. Methods Med., Hindawi (2018)

    Google Scholar 

Download references

Acknowledgements

The great comments provided by Dr. Saber Elaydi in ICDEA 2021 and during reviewing process are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahmineh Azizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azizi, T. (2023). Using Homotopy Link Function with Lipschitz Threshold in Studying Synchronized Fluctuations in Hierarchical Models. In: Elaydi, S., Kulenović, M.R.S., Kalabušić, S. (eds) Advances in Discrete Dynamical Systems, Difference Equations and Applications. ICDEA 2021. Springer Proceedings in Mathematics & Statistics, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-031-25225-9_4

Download citation

Publish with us

Policies and ethics