Skip to main content

Simulation of GA-Based Harmonics Elimination in CHMLI Using DTC for Dynamic Load

  • Conference paper
  • First Online:
Applications of Computational Intelligence in Management & Mathematics (ICCM 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 417))

  • 138 Accesses

Abstract

Harmonic reduction is one of the most important aspects of any inverter system. The presence of harmonics will not only reduce the efficiency of the inverter-based system but also influence the quality of the output power, which will challenge the size of the conductor and the ratings of switching devices. One way of doing so is to opt for a multilevel inverter. In a multilevel inverter, an increase in the number of levels will reduce the THD. Further, reduction of THD may be achieved by proper selection of triggering pulses so that the dominant orders of harmonics get eliminated. It will help abolish the requirement of the low pass filters, as needed in the case of two-level inverters. The predominant harmonics may be removed by different optimization techniques. In this research paper, a 15th-level CHMLI with asymmetrical voltages has been considered, whose optimized seven triggering pulses have been obtained by the GA method. The generation of pulses uses the direct torque control (DTC) technique of an induction motor connected to CHMLI. The simulated results indicate a reduction in the dominant individual order of harmonics, thus signifying the fruitfulness of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Rodriguez, J.-S. Lai, F.Z. Peng. Multilevel inverters: a survey of topologies, controls, and applications. IEEE Transactions on industrial electronics, 49(4), 724–738 (2002).

    Article  Google Scholar 

  2. Gaddafi Sani Shehu, Abdullahi Bala Kunya, Ibrahim Haruna Shanono, and Tankut Yalcinoz. A Review of Multilevel Inverter Topology and Control Techniques. Journal of Automation and Control Engineering 4(3), 233-241 (2016).

    Article  Google Scholar 

  3. Lipika Nanda, A. Dasgupta, and U.K. Rout. A Comparative Studies of Cascaded Multilevel Inverters Having Reduced Number of Switches with R and RL-Load. International Journal of Power Electronics and Drive System 8(1), 40-50 (2017).

    Google Scholar 

  4. Domingo A. Ruiz-Caballero, Reynaldo M. Ramos-Astudillo, and Samir Ahmad Mussa, "Symmetrical Hybrid Multilevel DC–AC Converters with Reduced Number of Insulated DC Supplies", IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, pp. 2307 – 2314 (2010).

    Article  Google Scholar 

  5. Kannan Ramani, Mohd. Ali Jagabar Sathik, and Selvam Sivakumar. A New Symmetric Multilevel Inverter Topology Using Single and Double Source Sub-Multilevel Inverters. Journal of power electronics 15(1), 96-105 (2015).

    Google Scholar 

  6. Kennedy Adinbo Aganah, Cristopher Luciano, Mandoye Ndoye, and Gregory Murphy. New Switched-Dual-Source Multilevel Inverter for Symmetrical and Asymmetrical Operation. Energies 11(8), 1-13 (2018).

    Google Scholar 

  7. Angga Muhamad Andreh, Subiyanto, and Said Sunardiyo. Simulation Model of Harmonics Reduction Technique using Shunt Active Filter by Cascade Multilevel Inverter Method. International Conference on Engineering, Science and Nanotechnology (ICESNANO 2016) AIP Conf. Proc. (2016) https://doi.org/10.1063/1.4968318.

  8. Naresh K. Pilli, M. Raghuram, Avneet Kumar, Santosh K. Singh. Single dc-source-based seven-level boost inverter for electric vehicle application. IET Power Electronics 12(13), 3331-3339 (2019), https://doi.org/10.1049/IET-PEL.2019.0255.

    Article  Google Scholar 

  9. C. Dhanamjayulu, G. Arun Kumar, B. Jaganatha Pandian, C. V. Ravi Kumar, M. Praveen Kumar, A. Rini Ann Jerin And P. Venugopal. Real-time implementation of a 31-level asymmetrical cascaded multilevel inverter for dynamic loads. IEEE Access 7, 51254-51266 (2019), https://doi.org/10.1109/ACCESS.2019.2909831.

    Article  Google Scholar 

  10. B. D. Reddy, M. P. Selvan and S. Moorthi. Design, Operation, and Control of S3 Inverter for Single-Phase Microgrid Applications. IEEE Transactions on Industrial Electronics 62(9) 5569-5577 (2015), https://doi.org/10.1109/TIE.2015.2414898.

    Article  Google Scholar 

  11. M. Leon M. Tolbert, and Thomas G. Habetler. Novel Multilevel Inverter Carrier-Based PWM Method. IEEE Transactions On Industry Applications 35(5), 1098- 1107 (1999).

    Article  Google Scholar 

  12. Ebrahim Babaei, and Seyed Hossein Hosseini. New cascaded multilevel inverter topology with a minimum number of switches. Energy Conversion and Management 50, 2761–2767 (2009).

    Article  Google Scholar 

  13. Kaumil B. Shah and Hina Chandwani. Comparison of Different Discontinuous PWM Technique for Switching Losses Reduction in Modular Multilevel Converters. International Journal of Energy and Power Engineering 12(11), 852- 859 (2018).

    Google Scholar 

  14. B. G. Fernandes and S. K. Pillai. Programmed PWM inverter using PC for induction motor drive," [1992] Proceedings of the IEEE International Symposium on Industrial Electronics, 2, 823-824 (1992), https://doi.org/10.1109/ISIE.1992.279712.

  15. D. Singh, A. Sharma, P. D. Singh, and S. Gao. Selective Harmonic Elimination for Cascaded Three-Phase Multilevel Inverter. 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, pp. 437–442, (2018), https://doi.org/10.1109/ICPEICES.2018.8897407.

  16. Tapan Trivedi, Pramod Agarwal, Rajendrasinh Jadeja, Pragnesh Bhatt. FPGA Based Implementation of Simplified Space Vector PWM Algorithm for Multilevel Inverter Fed Induction Motor Drives. World Academy of Science, Engineering and Technology 9(8), 1144-1149 (2015).

    Google Scholar 

  17. A. Sharma, D. Singh, P. Devachandra Singh, and S. Gao. Analysis of Sinusoidal PWM and Space Vector PWM based diode clamped multilevel inverter. 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1-6, (2018), https://doi.org/10.1109/UPCON.2018.8596899.

  18. Lazhar Manai, Faouzi Armi, Mongi Besbes. Optimization-based selective harmonic elimination for capacitor voltages balancing in multilevel inverters considering load power factor. Electrical Engineering, (2020), https://doi.org/10.1007/s00202-020-00960-5.

  19. Muhammad Salman, Inzamam Ul Haq, Tanvir Ahmad, Haider Ali, Affaq Qamar, Abdul Basit, Murad Khan, and Javed Iqbal. Minimization of total harmonic distortions of cascaded H-bridge multilevel inverter by utilizing bio-inspired AI algorithm. EURASIP Journal on Wireless Communications and Networking, (2020), https://doi.org/10.1186/s13638-020-016865.

  20. J.N. Nash. Direct torque control, induction motor vector control without an encoder. IEEE Transactions on Industry Applications 33(2), 333–341 (1997), https://doi.org/10.1109/28.567792.

    Article  Google Scholar 

  21. B. K. Bose. Neural Network Applications in Power Electronics and Motor Drives—An Introduction and Perspective. IEEE Transactions on Industrial Electronics 54(1), 14-33, (2007), https://doi.org/10.1109/TIE.2006.888683.

    Article  Google Scholar 

  22. M. Mengoni, A. Amerise, L. Zarri, et al. Control scheme for open-ended induction motor drives with a floating capacitor bridge over a wide speed range. IEEE Trans. Ind., 53(5), 4504–4514 (2017).

    Article  Google Scholar 

  23. K.K. Venkata Praveen, K.M. Ravi Eswar, T. Vinay Kumar. Improvised predictive torque control strategy for an open-end winding induction motor drive fed with four-level inversion using normalized weighted sum model. IET Power Electron. 11(5), 808–816 (2018).

    Article  Google Scholar 

  24. K.M. Ravi Eswar, K.V. Praveen Kumar, T. Vinay Kumar. Modified predictive torque and flux control for open-end winding induction motor drive based on ranking method. IET Electronics Power 12(4), 463– 473 (2018).

    Google Scholar 

  25. Manish Verma, Neeraj Bhatia, Scott D. Holdridge & Tood O'Neal. Isolation Techniques for medium voltage adjustable speed drives. IEEE Industry Application Magazine, 25(6), 92-100, (2019), https://doi.org/10.1109/MIAS.2019.2923114.

    Article  Google Scholar 

  26. Najib El Ouanjli, Aziz Derouich, Abdelaziz El Ghzizal, Saad Motahhir, Ali Chebabhi, Youness El Mourabit, and Mohammed Taoussi. Modern improvement techniques of direct torque control for induction motor drives - a review. Protection and Control of Modern Power Systems 4, 1-12 (2019)

    Article  Google Scholar 

  27. David B. Durocher & Christopher Thompson. Medium Voltage adjustable speed drives upgrade. IEEE Industry Application Magazine 25(6), 35-43, (2019) https://doi.org/10.1109/MIAS.2018.2875183.

    Article  Google Scholar 

  28. Isao Takahashi, Toshihiko Noguchi. A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications 22(5), 820–827 (1986) https://doi.org/10.1109/tia.1986.4504799.

    Article  Google Scholar 

  29. Yukai Wang, Yuying Shi, Yang Xu, and Robert D. Lorenz. A Comparative Overview of Indirect Field Oriented Control (IFOC) and Deadbeat-Direct Torque and Flux Control (DB-DTFC) for AC Motor Drives. Chinese Journal of Electrical Engineering 1(1), 9-20 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Annexure I – Motor parameter

Annexure I – Motor parameter

Sl. no.

Parameter

Value

Sl. no.

Parameter

Value

1

Stator resistance

6.03 Ω

5

Mutual inductance

489.3e-3 H

2

Stator inductance

489.3e-3 H

6

No. of poles

4

3

Rotor resistance

6.085 Ω

7

Moment of inertia

0.00488 kgm2

4

Rotor inductance

450.3e-3 H

8

DC voltage source (sym.)

54 V

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Gao, S. (2023). Simulation of GA-Based Harmonics Elimination in CHMLI Using DTC for Dynamic Load. In: Mishra, M., Kesswani, N., Brigui, I. (eds) Applications of Computational Intelligence in Management & Mathematics. ICCM 2022. Springer Proceedings in Mathematics & Statistics, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-031-25194-8_11

Download citation

Publish with us

Policies and ethics