Skip to main content

Introduction

  • Chapter
  • First Online:
Low-Dimensional Chalcohalide Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

  • 178 Accesses

Abstract

The basic structural, electrical, and optical properties of chalcohalide bulk crystals as well as low-dimensional nanostructures are reviewed in this chapter. A plenty of different chalcohalide compounds are characterized in relation to their possible applications. The ternary pnictogen chalcohalides are analyzed particularly. A special attention is also paid to the ferroelectricity which occurs in these materials. In order to better understanding this unique phenomenon, a general introduction to the ferroelectric materials and their inherent properties are presented. The effect of reduction of particle size on the phase transition temperature is discussed. Finally, chemical composition modification and strain engineering are elaborated as two main approaches that are used to tune the Curie temperature of the chalcohalide ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Peter Papoh, Introductory chapter: chalcogen chemistry—the footprint into new materials development, in Chalcogen Chemistry (IntechOpen, Rijeka, 2019), p. Ch. 1

    Google Scholar 

  2. E.-Z.M. Ebeid, M.B. Zakaria, Thermal analysis in recycling and waste management, in Thermal Analysis, ed. by E.-Z.M. Ebeid, M.B. Zakaria (Elsevier, 2021), pp. 247–300

    Google Scholar 

  3. M.A. Busch, Halogen chemistry, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2018)

    Google Scholar 

  4. L. Bouëssel Du Bourg, E. Furet, A. Lecomte, L. Le Pollès, S. Kohara, C.J. Benmore, E. Bychkov, D. Le Coq, Experimental and theoretical insights into the structure of tellurium chloride glasses. Inorg. Chem. 57, 2517 (2018)

    Article  Google Scholar 

  5. S. Suehara, O. Noguera, T. Aizawa, T. Sasaki, J. Lucas, Ab Initio calculation of chain structures in chalcohalide glasses. J. Non. Cryst. Solids 354, 168 (2008)

    Article  CAS  Google Scholar 

  6. W. Khan, S. Hussain, J. Minar, S. Azam, Electronic and thermoelectric properties of ternary chalcohalide semiconductors: first principles study. J. Electron. Mater. 47, 1131 (2018)

    Article  CAS  Google Scholar 

  7. A.C. Wibowo, C.D. Malliakas, H. Li, C.C. Stoumpos, D.Y. Chung, B.W. Wessels, A.J. Freeman, M.G. Kanatzidis, An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: a new candidate for hard radiation detection. Cryst. Growth Des. 16, 2678 (2016)

    Google Scholar 

  8. A.C. Wibowo, C.D. Malliakas, D.Y. Chung, J. Im, A.J. Freeman, M.G. Kanatzidis, Mercury bismuth chalcohalides, Hg3Q2Bi2Cl8 (Q = S, Se, Te): syntheses, crystal structures, band structures, and optical properties. Inorg. Chem. 52, 2973 (2013)

    Article  CAS  Google Scholar 

  9. X. Zhang, K. Liu, J.Q. He, H. Wu, Q.Z. Huang, J.H. Lin, Z.Y. Lu, F.Q. Huang, Antiperovskite chalco-halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with spin super-super exchange. Sci. Rep. 5, 15910 (2015)

    Article  CAS  Google Scholar 

  10. L. Wang, S.J. Hwu, A new series of chalcohalide semiconductors with composite CdBr2/Sb2Se3 lattices: synthesis and characterization of CdSb2Se3Br2 and indium derivatives InSb2S4X (X = Cl and Br) and InM2Se4Br (M = Sb and Bi). Chem. Mater. 19, 6212 (2007)

    Article  CAS  Google Scholar 

  11. H.J. Zhao, P.F. Liu, Synthesis, crystal and electronic structure, and optical property of the pentanary chalcohalide Ba3KSb4S9Cl. J. Solid State Chem. 232, 37 (2015)

    Article  CAS  Google Scholar 

  12. Y.J. Zheng, Y.F. Shi, C. Bin Tian, H. Lin, L.M. Wu, X.T. Wu, Q.L. Zhu, An unprecedented pentanary chalcohalide with Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties. Chem. Commun. 55, 79 (2019)

    Google Scholar 

  13. E.M. El-Fawal, Visible light-driven BiOBr/Bi2S3@CeMOF heterostructured hybrid with extremely efficient photocatalytic reduction performance of nitrophenols: modeling and optimization. ChemistrySelect 6, 6904 (2021)

    Article  CAS  Google Scholar 

  14. T. Li, X. Wang, Y. Yan, D.B. Mitzi, Phase stability and electronic structure of prospective Sb-based mixed sulfide and iodide 3D perovskite (CH3NH3)SbSI2. J. Phys. Chem. Lett. 9, 3829 (2018)

    Article  CAS  Google Scholar 

  15. E. Wlaźlak et al., Heavy pnictogen chalcohalides: the synthesis, structure and properties of these rediscovered semiconductors. Chem. Commun. 54, 12133 (2018)

    Article  Google Scholar 

  16. P.I. Rentzeperis, Crystal growth and structure of chalcohalogenides and chalcogenides of the general formulae AmV BnVI CpVII and A2B3 with A = As, Sb, Bi; B = S, Se, Te and C = Cl, Br, I. Prog. Cryst. Growth Charact. Mater. 21, 113 (1991)

    Article  CAS  Google Scholar 

  17. M. Nowak, M. Jesionek, K. Mistewicz, Fabrication techniques of group 15 ternary chalcohalide nanomaterials, in Nanomaterials Synthesis: Design, Fabrication and Applications, ed. by Y. Beeran Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens, V. Kokol (Elsevier, 2019), pp. 337–384

    Google Scholar 

  18. M. Nowak, M. Jesionek, K. Mistewicz, Applications of group 15 ternary chalcohalide nanomaterials, in Industrial Applications of Nanomaterials, ed. by S. Thomas, Y. Grohens, N. Pottathara (Elsevier, 2019), pp. 225–282

    Google Scholar 

  19. K.T. Butler, S. McKechnie, P. Azarhoosh, M. Van Schilfgaarde, D.O. Scanlon, A. Walsh, Quasi-Particle Electronic Band Structure and Alignment of the V-VI-VII Semiconductors SbSI, SbSBr, and SbSeI for Solar Cells. Appl. Phys. Lett. 108, 112103 (2016)

    Article  Google Scholar 

  20. R. Nie, M. Hu, A.M. Risqi, Z. Li, S. Il Seok, Efficient and stable antimony selenoiodide solar cells, Adv. Sci. 8, 2003172 (2021)

    Google Scholar 

  21. H. Shi, W. Ming, M.H. Du, Bismuth chalcohalides and oxyhalides as optoelectronic materials. Phys. Rev. B 93, 104108 (2016)

    Article  Google Scholar 

  22. S.Z.M. Murtaza, P. Vaqueiro, Rapid synthesis of chalcohalides by ball milling: preparation and characterisation of BiSI and BiSeI. J. Solid State Chem. 291, 121625 (2020)

    Article  CAS  Google Scholar 

  23. R.E. Brandt et al., Searching for “Defect-Tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667 (2017)

    Article  CAS  Google Scholar 

  24. R. Nie, H.S. Yun, M.J. Paik, A. Mehta, B.W. Park, Y.C. Choi, S. Il Seok, Efficient solar cells based on light-harvesting antimony sulfoiodide, Adv. Energy Mater. 8, 1701901 (2018)

    Google Scholar 

  25. D.W. Davies, K.T. Butler, J.M. Skelton, C. Xie, A.R. Oganov, A. Walsh, Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem. Sci. 9, 1022 (2018)

    Article  CAS  Google Scholar 

  26. B. Peng, K. Xu, H. Zhang, Z. Ning, H. Shao, G. Ni, J. Li, Y. Zhu, H. Zhu, C.M. Soukoulis, 1D SbSeI, SbSI, and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications. Adv. Theory Simul. 1, 1700005 (2018)

    Article  Google Scholar 

  27. F. Palazon, Metal chalcohalides: next generation photovoltaic materials? Sol. RRL 6, 2100829 (2022)

    Article  CAS  Google Scholar 

  28. Y.C. Choi, K.W. Jung, Recent progress in fabrication of antimony/bismuth chalcohalides for lead-free solar cell applications. Nanomaterials 10, 2284 (2020)

    Google Scholar 

  29. S. Farooq, T. Feeney, J.O. Mendes, V. Krishnamurthi, S. Walia, E. Della Gaspera, J. van Embden, High Gain Solution-Processed Carbon-Free BiSI Chalcohalide Thin Film Photodetectors. Adv. Funct. Mater. 31, 2104788 (2021)

    Google Scholar 

  30. M.M. Frutos, M.E.P. Barthaburu, L. Fornaro, I. Aguiar, Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors. Nanotechnology 31, 225710 (2020)

    Article  CAS  Google Scholar 

  31. Y. He et al., Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer. Cryst. Growth Des. 19, 2074 (2019)

    Article  CAS  Google Scholar 

  32. H. Xu, X. Wang, Q. Nie, Y. He, P. Zhang, T. Xu, S. Dai, X. Zhang, Glass formation and properties of Ge-Ga-Te-ZnI2 far infrared chalcohalide glasses. J. Non. Cryst. Solids 383, 212 (2014)

    Article  CAS  Google Scholar 

  33. C. Fourmentin, X.H. Zhang, E. Lavanant, T. Pain, M. Rozé, Y. Guimond, F. Gouttefangeas, L. Calvez, IR GRIN lenses prepared by ionic exchange in chalcohalide glasses. Sci. Rep. 11, 11081 (2021)

    Article  CAS  Google Scholar 

  34. S. Simsek, H. Koc, S. Palaz, O. Oltulu, A.M. Mamedov, E. Ozbay, Band Gap and Optical Transmission in the Fibonacci Type One-Dimensional A5B6C7 Based Photonic Crystals. Phys. Status Solidi Curr. Top. Solid State Phys. 12, 540 (2015)

    Google Scholar 

  35. S. Simsek, S. Palaz, A.M. Mamedov, E. Ozbay, Fibonacci sequences quasiperiodic A5B6C7 ferroelectric based photonic crystal: FDTD analysis. Integr. Ferroelectr. 183, 26 (2017)

    Article  CAS  Google Scholar 

  36. M. Arumugam, M.Y. Choi, Recent progress on Bismuth Oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 81, 237 (2020)

    Article  CAS  Google Scholar 

  37. S. Güler-Klllç, Ç. Klllç, Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: a dispersion-corrected density-functional study. Phys. Rev. B Condens. Matter Mater. Phys. 91, 245204 (2015)

    Google Scholar 

  38. V.A. Kulbachinskii, V.G. Kytin, A.A. Kudryashov, A.N. Kuznetsov, A.V. Shevelkov, On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI. J. Solid State Chem. 193, 154 (2012)

    Article  CAS  Google Scholar 

  39. S. Li, L. Xu, X. Kong, T. Kusunose, N. Tsurumachi, Q. Feng, Bi13S18X2-based solar cells (X = Cl, Br, I): photoelectric behavior and photovoltaic performance. Phys. Rev. Appl. 15, 34040 (2021)

    Article  CAS  Google Scholar 

  40. S.R. Kavanagh, C.N. Savory, D.O. Scanlon, A. Walsh, Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn2SbS2I3. Mater. Horizons 8, 2709 (2021)

    Article  CAS  Google Scholar 

  41. D. Tiwari, F. Cardoso-Delgado, D. Alibhai, M. Mombrú, D.J. Fermín, Photovoltaic performance of phase-pure orthorhombic BiSI thin-films. ACS Appl. Energy Mater. 2, 3878 (2019)

    Article  CAS  Google Scholar 

  42. Y.C. Choi, E. Hwang, Controlled growth of BiSi Nanorod-based films through a two-step solution process for solar cell applications. Nanomaterials 9, 1650 (2019)

    Google Scholar 

  43. Y.C. Choi, K.W. Jung, One-step solution deposition of antimony selenoiodide films via precursor engineering for lead-free solar cell applications. Nanomaterials 11, 3206 (2021)

    Google Scholar 

  44. A.C. Wibowo, C.D. Malliakas, Z. Liu, J.A. Peters, M. Sebastian, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg. Chem. 52, 7045 (2013)

    Article  CAS  Google Scholar 

  45. K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI Pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 64, 103906 (2019)

    Article  CAS  Google Scholar 

  46. S. Johnsen, Z. Liu, J.A. Peters, J.H. Song, S. Nguyen, C.D. Malliakas, H. Jin, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Thallium chalcohalides for X-Ray and γ-Ray detection. J. Am. Chem. Soc. 133, 10030 (2011)

    Article  CAS  Google Scholar 

  47. M. Tamilselvan, A.J. Bhattacharyya, Antimony Sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 6, 105980 (2016)

    Article  CAS  Google Scholar 

  48. G. Chen, W. Li, Y. Yu, Q. Yang, Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 5, 21859 (2015)

    Article  CAS  Google Scholar 

  49. K. Mistewicz et al., A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 517, 146138 (2020)

    Article  CAS  Google Scholar 

  50. K. Mistewicz, M. Nowak, D. Stróż, A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials 9, 580 (2019)

    Google Scholar 

  51. P. Kwolek, K. Pilarczyk, T. Tokarski, J. Mech, J. Irzmański, K. Szaciłowski, Photoelectrochemistry of N-type antimony sulfoiodide nanowires. Nanotechnology 26, 105710 (2015)

    Article  Google Scholar 

  52. Y.C. Choi, E. Hwang, D.H. Kim, Controlled growth of SbSI thin films from amorphous Sb2S3 for low-temperature solution processed chalcohalide solar cells. APL Mater. 6, 121108 (2018)

    Article  Google Scholar 

  53. Z. Ran, X. Wang, Y. Li, D. Yang, X.G. Zhao, K. Biswas, D.J. Singh, L. Zhang, Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials. Npj Comput. Mater. 4, 14 (2018)

    Article  Google Scholar 

  54. H. Rodot, A. Hrubý, J. Horák, Amorphous semiconducting AsSeI. Czechoslov. J. Phys. 21, 1213 (1971)

    Article  CAS  Google Scholar 

  55. C. Liu, X.J. Wang, Room temperature synthesis of Bi4O5I2 and Bi5O7I Ultrathin nanosheets with a high visible light photocatalytic performance. Dalt. Trans. 45, 7720 (2016)

    Article  CAS  Google Scholar 

  56. A. Alzamly et al., Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. J. Photochem. Photobiol. A Chem. 375, 30 (2019)

    Article  CAS  Google Scholar 

  57. M. Li, Y. Cui, Y. Jin, H. Li, Facile hydrolysis synthesis of Bi4O5Br2 photocatalyst with excellent visible light photocatalytic performance for the degradation of resorcinol. RSC Adv. 6, 47545 (2016)

    Article  CAS  Google Scholar 

  58. X. Xiong, T. Zhou, X. Liu, S. Ding, J. Hu, Surfactant-mediated synthesis of single-crystalline Bi3O4Br nanorings with enhanced photocatalytic activity. J. Mater. Chem. A 5, 15706 (2017)

    Article  CAS  Google Scholar 

  59. B. Xu, Y. Gao, Y. Li, S. Liu, D. Lv, S. Zhao, H. Gao, G. Yang, N. Li, L. Ge, Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: the effect of defect states on photocatalytic performance. Appl. Surf. Sci. 507, 144806 (2020)

    Article  CAS  Google Scholar 

  60. L. Xinping, H. Tao, H. Fuqiang, W. Wendeng, S. Jianlin, Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. J. Phys. Chem. B 110, 24629 (2006)

    Article  Google Scholar 

  61. S. Palaz, O. Oltulu, A.M. Mamedov, E. Ozbay, AVBVICVII ferroelectrics as novel materials for phononic crystals. Ferroelectrics 511, 12 (2017)

    Article  CAS  Google Scholar 

  62. M. Nowak, Photoferroelectric nanowires, in Nanowires Science and Technology (IntechOpen, Rijeka, 2010), p. Ch. 13

    Google Scholar 

  63. J. Kreisel, M. Alexe, P.A. Thomas, A photoferroelectric material is more than the sum of its parts. Nat. Mater. 11, 260 (2012)

    Article  CAS  Google Scholar 

  64. H. Li, F. Li, Z. Shen, S.T. Han, J. Chen, C. Dong, C. Chen, Y. Zhou, M. Wang, Photoferroelectric perovskite solar cells: principles advances and insights. Nano Today 37, 101062 (2021)

    Article  CAS  Google Scholar 

  65. K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838 (2015)

    Article  CAS  Google Scholar 

  66. R. Kern, An electro-optical and electromechanical effect in SbSI. J. Phys. Chem. Solids 23, 249 (1962)

    Article  CAS  Google Scholar 

  67. R. Kniep, H.D. Reski, Chalcogenide iodides of arsenic. Angew. Chemie Int. Ed. English 20, 212 (1981)

    Article  Google Scholar 

  68. G.P. Voutsas, P.J. Rentzeperis, The crystal structure of the paraelectric bismuth thiochloride, BiSCl. Zeitschrift Für Krist. Cryst. Mater. 152, 109 (1980)

    Article  CAS  Google Scholar 

  69. G.P. Voutsas, P.J. Rentzeperis, Crystal structure of bismuth selenochloride, BiSeCl. Zeitschrift Für Krist. Cryst. Mater. 177, 117 (1986)

    Article  CAS  Google Scholar 

  70. E. Dönges, Über Chalkogenohalogenide Des Dreiwertigen Antimons Und Wismuts. II. Über Selenohalogenide Des Dreiwertigen Antimons Und Wismuts Und Über Antimon(III)‐selenid Mit 2 Abbildungen. ZAAC J. Inorg. Gen. Chem. 263, 280 (1950)

    Google Scholar 

  71. A.M. Ganose, K.T. Butler, A. Walsh, D.O. Scanlon, Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A 4, 2060 (2016)

    Article  CAS  Google Scholar 

  72. A. Audzijonis, R. Sereika, L. Žigas, R. Žaltauskas, A. Kvedaravicius, Lattice dynamics of ferroelectric SbSBr crystal. Ferroelectrics 413, 434 (2011)

    Article  CAS  Google Scholar 

  73. A. Audzijonis, G. Gaigalas, L. Žigas, A. Pauliukas, B. Šalkus, R. Žaltauskas, A. Kvedaravičius, A. Čerškus, J. Narušis, Investigation of the electronic structure of the SbSeBr cluster. Cent. Eur. J. Phys. 6, 415 (2008)

    CAS  Google Scholar 

  74. G.P. Voutsas, P.J. Rentzeperis, The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift Für Krist. Cryst. Mater. 161, 111 (1982)

    Article  CAS  Google Scholar 

  75. A.G. Papazoglou, P.J. Rentzeperis, The crystal structure of antimony telluroiodide, SbTel. Zeitschrift Für Krist. Cryst. Mater. 165, 159 (1983)

    Article  CAS  Google Scholar 

  76. M. Balkanski, J.Y. Prieur, A. Almeida, Ferroelectric phase transition of SbSBr. Ferroelectrics 54, 261 (1984)

    Article  Google Scholar 

  77. T. Inushima, A. Okamoto, K. Uchinokura, E. Matsuura, Observation of a phase transition in SbSBr single crystals grown by vapor transport method. J. Phys. Soc. Japan 48, 2167 (1980)

    Article  CAS  Google Scholar 

  78. E. Furman, O. Brafman, J. Makovsky, Phonons and ferroelectric phase transitions in SbSBr and SbSI and their solid solutions. Phys. Rev. B 8, 2341 (1973)

    Article  CAS  Google Scholar 

  79. R. Nitsche, H. Roetschi, P. Wild, New ferroelectric V. VI. VII compounds of the SbSI type, Appl. Phys. Lett. 4, 210 (1964)

    Google Scholar 

  80. H. Akkus, A. Kazempour, H. Akbarzadeh, A.M. Mamedov, Band structure and optical properties of SbSeI: density-functional calculation. Phys. Status Solidi Basic Res. 244, 3673 (2007)

    Article  CAS  Google Scholar 

  81. K. Ishikawa, Y. Shikata, K. Toyoda, Dielectric properties of Sb1−xBixSI crystals. Phys. Status Solidi 25, K187 (1974)

    Article  CAS  Google Scholar 

  82. S. Surthi, S. Kotru, R.K. Pandey, Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition. J. Mater. Sci. Lett. 22, 591 (2003)

    Article  CAS  Google Scholar 

  83. K. Imai, S. Kawada, M. Ida, Anomalous pyroelectric properties of SbSi single crystals. J. Phys. Soc. Jpn 21, 1855 (1966)

    Article  CAS  Google Scholar 

  84. W.A. Smith, J.P. Doughertyt, L.E. Cross, Pyroelectricity in SbSI. Ferroelectrics 33, 3 (1981)

    Article  Google Scholar 

  85. A. Mansingh, T.S. Rao, I-V and C-V characteristics of ferroelectric SbSI(Film)-Si-metal. Ferroelectrics 50, 263 (1983)

    Article  Google Scholar 

  86. M. Yoshida, K. Yamanaka, Y. Hamakawa, Semiconducting and dielectric properties of C-Axis oriented Sbsi thin film. Jpn. J. Appl. Phys. 12, 1699 (1973)

    Article  CAS  Google Scholar 

  87. E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel, Ferroelectricity in SbSI. Phys. Rev. 127, 2036 (1962)

    Article  CAS  Google Scholar 

  88. J. Grigas, A. Kajokas, A. Audzijonis, L. Igas, Peculiarities and properties of SbSI Electroceramics. J. Eur. Ceram. Soc. 21, 1337 (2001)

    Article  CAS  Google Scholar 

  89. A. Audzijonis, L. Žigas, R. Sereika, R. Žaltauskas, Origin of ferroelectric phase transition in SbSClxI1–x mixed crystals. Int. J. Mod. Phys. B 28, 1450209 (2014)

    Article  CAS  Google Scholar 

  90. M. Iqbal Khan, T. Chandra Upadhyay, General Introduction to Ferroelectrics, in Multifunctional Ferroelectric Materials, ed. by D. R. Sahu (IntechOpen, Rijeka, 2021), p. Ch. 2

    Google Scholar 

  91. P. Szperlich, Piezoelectric A15B16C17 compounds and their nanocomposites for energy harvesting and sensors: a review. Materials 14, 6973 (2021)

    Google Scholar 

  92. Y. Purusothaman, N.R. Alluri, A. Chandrasekhar, S.J. Kim, Photoactive piezoelectric energy harvester driven by antimony Sulfoiodide (SbSI): A AVBVICVII Class ferroelectric-semiconductor compound. Nano Energy 50, 256 (2018)

    Article  CAS  Google Scholar 

  93. B. Toroń, K. Mistewicz, M. Jesionek, M. Kozioł, D. Stróż, M. Zubko, Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires. Energy 212, 118717 (2020)

    Article  Google Scholar 

  94. K. Mistewicz, M. Jesionek, H.J. Kim, S. Hajra, M. Kozioł, Ł Chrobok, X. Wang, Nanogenerator for determination of acoustic power in ultrasonic reactors. Ultrason. Sonochem. 78, 105718 (2021)

    Article  CAS  Google Scholar 

  95. K. Mistewicz, Pyroelectric nanogenerator based on an SbSI-TiO2 nanocomposite. Sensors 22, 69 (2022)

    Google Scholar 

  96. J.Z. Xin, C.G. Fu, W.J. Shi, G.W. Li, G. Auffermann, Y.P. Qi, T.J. Zhu, X.B. Zhao, C. Felser, Synthesis and Thermoelectric properties of rashba semiconductor BiTeBr with intensive texture. Rare Met. 37, 274 (2018)

    Article  CAS  Google Scholar 

  97. H. Garot, D’un Produit Résultant de l’action Réciproque Du Sulfure d’antimoine et de l’iode. J. Pharm 10, 511 (1824)

    Google Scholar 

  98. R. Nitsche, W.J. Merz, Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154 (1960)

    Article  CAS  Google Scholar 

  99. A. Kikuchi, Y. Oka, E. Sawaguchi, Crystal structure determination of SbSi. J. Phys. Soc. Japan 23, 337 (1967)

    Article  CAS  Google Scholar 

  100. S. Ueda, I. Tatsuzaki, Y. Shindo, Change in the dielectric constant of SbSI caused by illumination. Phys. Rev. Lett. 18, 453 (1967)

    Article  CAS  Google Scholar 

  101. D. Berlincourt, H. Jaffe, W.J. Merz, R. Nitsche, Piezoelectric effect in the ferroelectric range in SbSI. Appl. Phys. Lett. 4, 61 (1964)

    Article  Google Scholar 

  102. K. Hamano, T. Nakamura, Y. Ishibashi, T. Ooyane, Piezoelectric property of SbSI single crystal. J. Phys. Soc. Japan 20, 1886 (1965)

    Article  CAS  Google Scholar 

  103. J.F. Li, D. Viehland, A.S. Bhalla, L.E. Cross, Pyro-Optic studies for infrared imaging. J. Appl. Phys. 71, 2106 (1992)

    Article  CAS  Google Scholar 

  104. S. Surthi, S. Kotru, R.K. Pandey, SbSI films for ferroelectric memory applications. Integr. Ferroelectr. 48, 263 (2002)

    Article  CAS  Google Scholar 

  105. A. Mansingh, T.S. Rao, Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films. J. Appl. Phys. 58, 3530 (1985)

    Article  CAS  Google Scholar 

  106. S. Narayanan, R. K. Pandey, Physical vapor deposition of antimony sulpho-iodide (SbSI) thin films and their properties, in IEEE International Symposium on Applications of Ferroelectrics (1994), pp. 309–311

    Google Scholar 

  107. C. Wang et al., SbSI nanocrystals: an excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 6, 12166 (2018)

    Article  CAS  Google Scholar 

  108. A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon, Y.M. Azhniuk, A.A. Kikineshi, V.P. Pinzenik, M. Kis-Varga, L. Daroczy, V.V. Lopushansky, X-Ray diffraction and raman scattering in SbSI nanocrystals. Mater. Res. Bull. 38, 1767 (2003)

    Article  CAS  Google Scholar 

  109. M. Tasviri, Z. Sajadi-Hezave, SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 436, 174 (2017)

    Article  CAS  Google Scholar 

  110. C. Wang, K. Tang, Q. Yang, B. Hai, G. Shen, C. An, W. Yu, Y. Qian, Synthesis of novel SbSI nanorods by a hydrothermal method. Inorg. Chem. Commun. 4, 339 (2001)

    Article  CAS  Google Scholar 

  111. G. Peng, H. Lu, Y. Liu, D. Fan, The construction of a single-crystalline SbSI nanorod array-WO3heterostructure photoanode for high PEC performance. Chem. Commun. 57, 335 (2021)

    Article  CAS  Google Scholar 

  112. J. Varghese, C. O’Regan, N. Deepak, R.W. Whatmore, J.D. Holmes, Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem. Mater. 24, 3279 (2012)

    Article  CAS  Google Scholar 

  113. C. Wang et al., Nonlinear optical response of SbSI nanorods dominated with direct band gaps. J. Phys. Chem. C 125, 15441 (2021)

    Article  CAS  Google Scholar 

  114. A.K. Pathak, M.D. Prasad, S.K. Batabyal, One-dimensional SbSI crystals from Sb, S, and I mixtures in ethylene glycol for solar energy harvesting. Appl. Phys. A Mater. Sci. Process. 125, 213 (2019)

    Article  CAS  Google Scholar 

  115. S. Manoharan, D. Kesavan, P. Pazhamalai, K. Krishnamoorthy, S.J. Kim, Ultrasound irradiation mediated preparation of antimony sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Mater. Chem. Front. 5, 2303 (2021)

    Article  CAS  Google Scholar 

  116. O. Gladkovskaya, I. Rybina, Y.K. Gun’Ko, A. Erxleben, G.M.O’Connor, Y. Rochev, Water-based ultrasonic synthesis of SbSI nanoneedles. Mater. Lett. 160, 113 (2015)

    Google Scholar 

  117. A.F. Devonshire, Theory of ferroelectrics. Adv. Phys. 3, 85 (1954)

    Article  Google Scholar 

  118. K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, Modern physics of ferroelectrics: essential background, in topics in applied physics, vol. 105 (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2007), pp.1–30

    Book  Google Scholar 

  119. K. Han, Q. Wang, Polymers for thin film capacitors: energy storage—Li conducting polymers, in Polymer Science: A Comprehensive Reference, vol. 10, ed. by K. Matyjaszewski, M. Möller (Elsevier, Amsterdam, 2012), pp.811–830

    Chapter  Google Scholar 

  120. X. Chai, J. Jiang, Q. Zhang, X. Hou, F. Meng, J. Wang, L. Gu, D.W. Zhang, A.Q. Jiang, Nonvolatile Ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020)

    Article  CAS  Google Scholar 

  121. P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017)

    Article  Google Scholar 

  122. J. Varghese, R.W. Whatmore, J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. J. Mater. Chem. C 1, 2618 (2013)

    Article  CAS  Google Scholar 

  123. L. Liang, X. Kang, Y. Sang, H. Liu, One-dimensional ferroelectric nanostructures: synthesis, properties, and applications. Adv. Sci. 3, 1500358 (2016)

    Article  Google Scholar 

  124. A. Rüdiger, R. Waser, Size effects in nanoscale ferroelectrics. J. Alloys Compd. 449, 2 (2008)

    Article  Google Scholar 

  125. O.G. Vendik, S.P. Zubko, L.T. Ter-Martirosayn, Experimental evidence of the size effect in thin ferroelectric films. Appl. Phys. Lett. 73, 37 (1998)

    Article  CAS  Google Scholar 

  126. Y. Park, K.M. Knowles, K. Cho, Particle-size effect on the ferroelectric phase transition in PbSc1/2Ta1/2O3 ceramics. J. Appl. Phys. 83, 5702 (1998)

    Article  CAS  Google Scholar 

  127. K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852 (1988)

    Article  CAS  Google Scholar 

  128. T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang, Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. J. Appl. Phys. 94, 618 (2003)

    Article  CAS  Google Scholar 

  129. W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698 (1994)

    Article  CAS  Google Scholar 

  130. Y.A. Barnakov, I.U. Idehenre, S.A. Basun, T.A. Tyson, D.R. Evans, Uncovering the mystery of ferroelectricity in zero dimensional nanoparticles. Nanoscale Adv. 1, 664 (2019)

    Article  CAS  Google Scholar 

  131. M.K. Teng, M. Massot, M. Balkanski, S. Ziolkiewicz, Atomic substitution and ferroelectric phase transition in BixSb1-XSI. Phys. Rev. B 17, 3695 (1978)

    Article  CAS  Google Scholar 

  132. P.S. Peercy, Raman scattering near the tricritical point in SbSI. Phys. Rev. Lett. 35, 1581 (1975)

    Article  CAS  Google Scholar 

  133. B. Garbarz-Glos, Dielectric properties of SbSI-modifed in phase transition region. Ferroelectrics 292, 137 (2003)

    Article  CAS  Google Scholar 

  134. R. Sereika, R. Zaltauskas, V. Lapeika, S. Stanionytė, R. Juškenas, Structural changes in chlorine-substituted SbSI. J. Appl. Phys. 126, 114101 (2019)

    Article  Google Scholar 

  135. A.R. Damodaran, J.C. Agar, S. Pandya, Z. Chen, L. Dedon, R. Xu, B. Apgar, S. Saremi, L.W. Martin, New modalities of strain-control of ferroelectric thin films. J. Phys. Condens. Matter 28, 263001 (2016)

    Article  Google Scholar 

  136. Y. Wang, Y. Hu, Z. Chen, Y. Guo, D. Wang, E.A. Wertz, J. Shi, Effect of strain on the curie temperature and band structure of low-dimensional SbSI. Appl. Phys. Lett. 112, 183104 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Mistewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistewicz, K. (2023). Introduction. In: Low-Dimensional Chalcohalide Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-25136-8_1

Download citation

Publish with us

Policies and ethics