Abstract
HEVC video is one of the most popular carriers for steganography. The existing transform coefficient-based HEVC steganography algorithms usually modify the coefficients of the candidate blocks to prevent distortion drift. Nevertheless, the embedding capacity is relatively small due to the strict candidate block selection rule, and embedding distortion is accumulated within group of pictures (GOP). In this paper, a novel transform coefficient-based steganography for HEVC is proposed to enlarge embedding capacity and reduce visual degradation. First, the visual distortion and GOP distortion are analyzed to elaborate the embedding influence of different cover coefficients. Next, different cover coefficients are assigned different costs. Besides, the modification in non-zero coefficients of \(4\times 4\) TUs in P-frames is explored to enhance embedding capacity. Moreover, by introducing a new evaluation indicator, it is verified the proposed algorithm can preserve less visual degradation while embedding more secret messages. Experimental results show that the proposed algorithm outperforms the competing methods in terms of visual quality, embedding capacity and anti-steganalysis performance.
Keywords
- HEVC
- High-capacity steganography
- Transform coefficient
This is a preview of subscription content, access via your institution.
Buying options







References
Wang, Y., Cao, Y., Zhao, X., Xu, Z., Zhu, M.: Maintaining rate-distortion optimization for IPM-based video steganography by constructing isolated channels in HEVC. In: 6th ACM Workshop on Information Hiding and Multimedia Security (IH and MMSec), Innsbruck, Austria, pp. 97–107. ACM (2018)
Jia, X., Wang, J., Liu, Y., Kang, X., Shi, Y.: A layered embedding-based scheme to cope with intra-frame distortion drift in IPM-based HEVC steganography. In: 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, pp. 2720–2724. IEEE (2021)
Dong, Y., Sun, T., Jiang, X.: A high capacity HEVC steganographic algorithm using intra prediction modes in multi-sized prediction blocks. In: Yoo, C.D., Shi, Y.-Q., Kim, H.J., Piva, A., Kim, G. (eds.) IWDW 2018. LNCS, vol. 11378, pp. 233–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11389-6_18
Dong, Y., Jiang, X., Li, Z., Sun, T., Zhang, Z.: Multi-channel HEVC steganography by minimizing IPM steganographic distortions. IEEE Trans. Multimed. https://doi.org/10.1109/TMM.2022.3150180
Yang, J., Li, S.: An efficient information hiding method based on motion vector space encoding for HEVC. Multimed. Tools Appl. 77(10), 11979–12001 (2017). https://doi.org/10.1007/s11042-017-4844-1
Yao, Y., Zhang, W., Yu, N., Zhao, X.: Defining embedding distortion for motion vector-based video steganography. Multimed. Tools Appl. 74, 11163–11186 (2015)
Guo, M., Sun, T., Jiang, X., Dong, Y., Xu, K.: A motion vector-based steganographic algorithm for HEVC with MTB mapping strategy. In: Wang, H., Zhao, X., Shi, Y., Kim, H.J., Piva, A. (eds.) IWDW 2019. LNCS, vol. 12022, pp. 293–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43575-2_25
Liu, S., Liu, B., Hu, Y., Zhao, X.: Non-degraded adaptive HEVC steganography by advanced motion vector prediction. IEEE Signal Process. Lett. 28, 1843–1847 (2021)
Ma, X., Li, Z., Tu, H., Zhang, B.: A data hiding algorithm for H.264/AVC video streams without intra-frame distortion drift. IEEE Trans. Circuits Syst. Video Technol. 20(4), 1320–1330 (2010)
Xue, Y., Zhou, J., Zeng, H., Zhong, P., Wen, J.: An adaptive steganographic scheme for H.264/AVC video with distortion optimization. Signal Process.: Image Commun. 76, 22–30 (2019)
Chen, Y., Wang, H., Wu, H., Wu, Z., Li, T., Malik, A.: Adaptive video data hiding through cost assignment and STCs. IEEE Trans. Depend. Secure Comput. 18(3), 1320–1335 (2021)
Chen, Y., Wang, H., Choo, K., He, P., Salcic, Z., Kaafar, M., et al.: DDCA: a distortion drift-based cost assignment method for adaptive video steganography in the transform domain. IEEE Trans. Depend. Secure Comput. 19(4), 2405–2420 (2021)
Liu, Y., Liu, S., Zhao, H., Liu, S.: A new data hiding method for H.265/HEVC video streams without intra-frame distortion drift. Multimed. Tools Appl. 78, 6459–6486 (2019)
Chang, P., Chung, K., Chen, J., Lin, C., Lin, T.: A DCT/DST-based error propagation-free data hiding algorithm for HEVC intra-coded frames. J. Vis. Commun. Image Represent. 25(2), 239–253 (2014)
Zhou, A., Jiang, X., Sun, T., Li, Z., Dong, Y.: A HEVC steganography algorithm based on DCT/DST coefficients with BLB distortion model. In: 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, pp. 1–9. IEEE (2021)
Yang, Y., Li, Z., Xie, W., Zhang, Z.: High capacity and multilevel information hiding algorithm based on PU partition modes for HEVC videos. Multimed. Tools Appl. 78(7), 8423–8446 (2018)
He, S., Xu, D., Yang, L., Liu, Y.: HEVC video information hiding scheme based on adaptive double-layer embedding strategy. J. Vis. Commun. Image Represent. 87, 103549 (2022)
Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)
Zhai, L., Wang, L., Ren, Y.: Universal detection of video steganography in multiple domains based on the consistency of motion vectors. IEEE Trans. Inf. Forensics Secur. 15, 1762–1777 (2020)
Wang, Y., Cao, Y., Zhao, X.: Video steganalysis based on centralized error detection in spatial domain. Infor. Secur. Cryptol. 472–483 (2017)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (62071267, 61771270, 62171244), Zhejiang Provincial Natural Science Foundation of China (LR20F020001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, L., Wang, R., Xu, D., Dong, L., He, S., Liu, F. (2023). High-Capacity Adaptive Steganography Based on Transform Coefficient for HEVC. In: Zhao, X., Tang, Z., Comesaña-Alfaro, P., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2022. Lecture Notes in Computer Science, vol 13825. Springer, Cham. https://doi.org/10.1007/978-3-031-25115-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-25115-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25114-6
Online ISBN: 978-3-031-25115-3
eBook Packages: Computer ScienceComputer Science (R0)