Skip to main content

High-Capacity Adaptive Steganography Based on Transform Coefficient for HEVC

  • 98 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13825)

Abstract

HEVC video is one of the most popular carriers for steganography. The existing transform coefficient-based HEVC steganography algorithms usually modify the coefficients of the candidate blocks to prevent distortion drift. Nevertheless, the embedding capacity is relatively small due to the strict candidate block selection rule, and embedding distortion is accumulated within group of pictures (GOP). In this paper, a novel transform coefficient-based steganography for HEVC is proposed to enlarge embedding capacity and reduce visual degradation. First, the visual distortion and GOP distortion are analyzed to elaborate the embedding influence of different cover coefficients. Next, different cover coefficients are assigned different costs. Besides, the modification in non-zero coefficients of \(4\times 4\) TUs in P-frames is explored to enhance embedding capacity. Moreover, by introducing a new evaluation indicator, it is verified the proposed algorithm can preserve less visual degradation while embedding more secret messages. Experimental results show that the proposed algorithm outperforms the competing methods in terms of visual quality, embedding capacity and anti-steganalysis performance.

Keywords

  • HEVC
  • High-capacity steganography
  • Transform coefficient

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-25115-3_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-25115-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Wang, Y., Cao, Y., Zhao, X., Xu, Z., Zhu, M.: Maintaining rate-distortion optimization for IPM-based video steganography by constructing isolated channels in HEVC. In: 6th ACM Workshop on Information Hiding and Multimedia Security (IH and MMSec), Innsbruck, Austria, pp. 97–107. ACM (2018)

    Google Scholar 

  2. Jia, X., Wang, J., Liu, Y., Kang, X., Shi, Y.: A layered embedding-based scheme to cope with intra-frame distortion drift in IPM-based HEVC steganography. In: 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, pp. 2720–2724. IEEE (2021)

    Google Scholar 

  3. Dong, Y., Sun, T., Jiang, X.: A high capacity HEVC steganographic algorithm using intra prediction modes in multi-sized prediction blocks. In: Yoo, C.D., Shi, Y.-Q., Kim, H.J., Piva, A., Kim, G. (eds.) IWDW 2018. LNCS, vol. 11378, pp. 233–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11389-6_18

    CrossRef  Google Scholar 

  4. Dong, Y., Jiang, X., Li, Z., Sun, T., Zhang, Z.: Multi-channel HEVC steganography by minimizing IPM steganographic distortions. IEEE Trans. Multimed. https://doi.org/10.1109/TMM.2022.3150180

  5. Yang, J., Li, S.: An efficient information hiding method based on motion vector space encoding for HEVC. Multimed. Tools Appl. 77(10), 11979–12001 (2017). https://doi.org/10.1007/s11042-017-4844-1

    CrossRef  Google Scholar 

  6. Yao, Y., Zhang, W., Yu, N., Zhao, X.: Defining embedding distortion for motion vector-based video steganography. Multimed. Tools Appl. 74, 11163–11186 (2015)

    CrossRef  Google Scholar 

  7. Guo, M., Sun, T., Jiang, X., Dong, Y., Xu, K.: A motion vector-based steganographic algorithm for HEVC with MTB mapping strategy. In: Wang, H., Zhao, X., Shi, Y., Kim, H.J., Piva, A. (eds.) IWDW 2019. LNCS, vol. 12022, pp. 293–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43575-2_25

    CrossRef  Google Scholar 

  8. Liu, S., Liu, B., Hu, Y., Zhao, X.: Non-degraded adaptive HEVC steganography by advanced motion vector prediction. IEEE Signal Process. Lett. 28, 1843–1847 (2021)

    CrossRef  Google Scholar 

  9. Ma, X., Li, Z., Tu, H., Zhang, B.: A data hiding algorithm for H.264/AVC video streams without intra-frame distortion drift. IEEE Trans. Circuits Syst. Video Technol. 20(4), 1320–1330 (2010)

    CrossRef  Google Scholar 

  10. Xue, Y., Zhou, J., Zeng, H., Zhong, P., Wen, J.: An adaptive steganographic scheme for H.264/AVC video with distortion optimization. Signal Process.: Image Commun. 76, 22–30 (2019)

    Google Scholar 

  11. Chen, Y., Wang, H., Wu, H., Wu, Z., Li, T., Malik, A.: Adaptive video data hiding through cost assignment and STCs. IEEE Trans. Depend. Secure Comput. 18(3), 1320–1335 (2021)

    Google Scholar 

  12. Chen, Y., Wang, H., Choo, K., He, P., Salcic, Z., Kaafar, M., et al.: DDCA: a distortion drift-based cost assignment method for adaptive video steganography in the transform domain. IEEE Trans. Depend. Secure Comput. 19(4), 2405–2420 (2021)

    CrossRef  Google Scholar 

  13. Liu, Y., Liu, S., Zhao, H., Liu, S.: A new data hiding method for H.265/HEVC video streams without intra-frame distortion drift. Multimed. Tools Appl. 78, 6459–6486 (2019)

    CrossRef  Google Scholar 

  14. Chang, P., Chung, K., Chen, J., Lin, C., Lin, T.: A DCT/DST-based error propagation-free data hiding algorithm for HEVC intra-coded frames. J. Vis. Commun. Image Represent. 25(2), 239–253 (2014)

    CrossRef  Google Scholar 

  15. Zhou, A., Jiang, X., Sun, T., Li, Z., Dong, Y.: A HEVC steganography algorithm based on DCT/DST coefficients with BLB distortion model. In: 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, pp. 1–9. IEEE (2021)

    Google Scholar 

  16. Yang, Y., Li, Z., Xie, W., Zhang, Z.: High capacity and multilevel information hiding algorithm based on PU partition modes for HEVC videos. Multimed. Tools Appl. 78(7), 8423–8446 (2018)

    CrossRef  Google Scholar 

  17. He, S., Xu, D., Yang, L., Liu, Y.: HEVC video information hiding scheme based on adaptive double-layer embedding strategy. J. Vis. Commun. Image Represent. 87, 103549 (2022)

    CrossRef  Google Scholar 

  18. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    CrossRef  Google Scholar 

  19. Zhai, L., Wang, L., Ren, Y.: Universal detection of video steganography in multiple domains based on the consistency of motion vectors. IEEE Trans. Inf. Forensics Secur. 15, 1762–1777 (2020)

    CrossRef  Google Scholar 

  20. Wang, Y., Cao, Y., Zhao, X.: Video steganalysis based on centralized error detection in spatial domain. Infor. Secur. Cryptol. 472–483 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62071267, 61771270, 62171244), Zhejiang Provincial Natural Science Foundation of China (LR20F020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawen Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Wang, R., Xu, D., Dong, L., He, S., Liu, F. (2023). High-Capacity Adaptive Steganography Based on Transform Coefficient for HEVC. In: Zhao, X., Tang, Z., Comesaña-Alfaro, P., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2022. Lecture Notes in Computer Science, vol 13825. Springer, Cham. https://doi.org/10.1007/978-3-031-25115-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25115-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25114-6

  • Online ISBN: 978-3-031-25115-3

  • eBook Packages: Computer ScienceComputer Science (R0)