Skip to main content

Adaptive Despread Spectrum-Based Image Watermarking for Fast Product Tracking

  • 100 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13825)

Abstract

With the digitalization of the physical markets, the number of users engaging in e-commerce and shopping online is rapidly increasing. An important application area for digital watermarking is the product tracking scenario. For product tracking scenario, watermarking can be used to provide both product links and copyright protection, so the robustness and extraction efficiency of watermarking are the most important metrics. The auto-convolution function (ACNF) based watermarking scheme is the latest image watermarking that achieves the most comprehensive robustness. However, ACNF watermarking is not resilient in the case of Gauss noise and average filtering. Besides, ACNF watermarking focuses only on robustness and ignores extraction efficiency, and the low efficiency of watermark extraction leads to unpleasant user experience. In this paper, we propose an adaptive despread spectrum-based image watermarking for fast product tracking. For watermark embedding, we construct a low-frequency watermark signal in the spatial domain to enhance the robustness to signal processing attacks. In watermark extraction, our scheme uses discrete wavelet transform (DWT) for image dimensionality reduction and adaptively watermark despread spectrum according to the wavelet decomposition level, which can achieve accurate and fast extraction of watermark. The experimental results demonstrate that our proposed watermarking scheme has superior robustness and extraction efficiency than the existing methods under the same imperceptibility.

Keywords

  • Image watermarking
  • Robustness
  • E-commerce

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-25115-3_12
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-25115-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Fang, H., et al.: Deep template-based watermarking. IEEE Trans. Circuits Syst. Video Technol. 31(4), 1436–1451 (2020)

    CrossRef  Google Scholar 

  2. Su, P., Kuo, T., Li, M.: A practical design of digital watermarking for video streaming services. J. Vis. Commun. Image Represent. 42, 161–172 (2017)

    CrossRef  Google Scholar 

  3. Ma, Z., Zhang, W., Fang, H., Dong, X., Geng, L., Yu, N.: Local geometric distortions resilient watermarking scheme based on symmetry. IEEE Trans. Circuits Syst. Video Technol. 31(12), 4826–4839 (2021)

    CrossRef  Google Scholar 

  4. Fang, H., Zhang, W., Zhou, H., Cui, H., Yu, N.: Screen-shooting resilient watermarking. IEEE Trans. Inf. Forensics Secur. 14(6), 1403–1418 (2018)

    CrossRef  Google Scholar 

  5. Kang, X., Huang, J., Zeng, W.: Efficient general print-scanning resilient data hiding based on uniform log-polar mapping. IEEE Trans. Inf. Forensics Secur. 5(1), 1–12 (2010)

    CrossRef  Google Scholar 

  6. Van Schyndel, R., Tirkel, A., Osborne, C.: A digital watermark. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 86–90. IEEE (1994)

    Google Scholar 

  7. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(3–4), 313–336 (1996)

    CrossRef  Google Scholar 

  8. Huang, Y., Niu, B., Guan, H., Zhang, S.: Enhancing image watermarking with adaptive embedding parameter and PSNR guarantee. IEEE Trans. Multimedia 21(10), 2447–2460 (2019)

    CrossRef  Google Scholar 

  9. Liu, J., Tu, Q., Xu, X.: Quantization-based image watermarking by using a normalization scheme in the wavelet domain. Information 9(8), 194 (2018)

    CrossRef  Google Scholar 

  10. Huan, W., Li, S., Qian, Z., Zhang, X.: Exploring stable coefficients on joint sub-bands for robust video watermarking in DT CWT domain. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1955–1965 (2021)

    CrossRef  Google Scholar 

  11. Xin, Y., Liao, S., Pawlak, M.: Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recogn. 40(12), 3740–3752 (2007)

    CrossRef  MATH  Google Scholar 

  12. Chun, W., Xing, W., Zhi, X.: Geometrically invariant image watermarking based on fast radial harmonic Fourier moments. Signal Process. Image Commun. 45, 10–23 (2016)

    CrossRef  Google Scholar 

  13. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE (2014)

    Google Scholar 

  14. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    CrossRef  Google Scholar 

  15. Liu, Q., Yang, S., Liu, J., Xiong, P., Zhou, M.: A discrete wavelet transform and singular value decomposition-based digital video watermark method. Appl. Math. Model. 85, 273–293 (2020)

    CrossRef  MATH  Google Scholar 

  16. Source code of Ref. 3. https://github.com/CirnoGiovanna/LGDR_watermark/

  17. The USC-SIPI image database. http://sipi.usc.edu/database/

  18. Yahoo’s image sharing website. https://www.flickr.com/

Download references

Acknowledegment

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62272331 and 61972269, and Sichuan Science and Technology Program under Grant 2022YFG0320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Wang, H., He, M., Li, J. (2023). Adaptive Despread Spectrum-Based Image Watermarking for Fast Product Tracking. In: Zhao, X., Tang, Z., Comesaña-Alfaro, P., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2022. Lecture Notes in Computer Science, vol 13825. Springer, Cham. https://doi.org/10.1007/978-3-031-25115-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25115-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25114-6

  • Online ISBN: 978-3-031-25115-3

  • eBook Packages: Computer ScienceComputer Science (R0)