Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 86 Accesses

Abstract

In this chapter, we provide a basic theoretical basis for the physics search performed in this analysis. In Sect. 3.1, we introduce the standard model of particle physics (SM), currently the best available theory for the interaction of the known fundamental particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If working in a regime where a perturbative expansion is valid, otherwise non-perturbative methods must be brought to bear.

  2. 2.

    The putative graviton would be the only spin-2 particle.

References

  1. Zyla P et al (2020) Review of particle physics. PTEP 2020(8):083C01

    Google Scholar 

  2. Aaij R, Beteta CA, Ackernley T, Adeva B, Adinolfi M, Afsharnia H, Aidala CA, Aiola S, Ajaltouni Z, Akar S, Albrecht J, Alessio F, Alexander M, Albero AA et al (2021) Test of lepton universality in beauty-quark decays

    Google Scholar 

  3. Peccei RD, Quinn HR (1977) \(\rm CP \) conservation in the presence of pseudoparticles. Phys Rev Lett 38:1440–1443

    Google Scholar 

  4. Peccei RD (2008) The strong CP problem and axions. In: Axions. Springer, Berlin, p 3

    Google Scholar 

  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, Brandstetter J, Dragicevic M, Ero J, Del Valle AE et al (2019) Combined measurements of Higgs boson couplings in proton-proton collisions at \(\sqrt{s}=13\) TeV. Eur Phys J C 79:421

    Article  ADS  Google Scholar 

  6. Curtin D, Essig R, Gori S, Jaiswal P, Katz A, Liu T, Liu Z, McKeen D, Shelton J, Strassler M, et al (2014) Exotic decays of the 125 gev higgs boson. Phys Rev D 90, Oct 2014

    Google Scholar 

  7. Essig R et al (2013) Dark sectors and new, light, weakly-coupled particles

    Google Scholar 

  8. Chadha-Day F, Ellis J, Marsh DJE (2021) Axion dark matter: What is it and why now?

    Google Scholar 

  9. Raffelt GG (2008) Astrophysical axion bounds. In: Axions, Springer, Berlin, p 51

    Google Scholar 

  10. Sikivie P (2008) Axion cosmology. In: Axions, Springer, Berlin, p 19

    Google Scholar 

  11. Marsh DJ (2016) Axion cosmology. Phys Rep 643:1

    Article  ADS  MathSciNet  Google Scholar 

  12. Graham PW, Irastorza IG, Lamoreaux SK, Lindner A, van Bibber KA (2015) Experimental searches for the axion and axion-like particles. Annu Rev Nucl Part Sci 65:485

    Article  ADS  Google Scholar 

  13. Irastorza IG, Redondo J (2018) New experimental approaches in the search for axion-like particles. Prog Part Nucl Phys 102:89

    Article  ADS  Google Scholar 

  14. Cadamuro D, Hannestad S, Raffelt G, Redondo J (2011) Cosmological bounds on sub-mev mass axions. J Cosmol Astropart Phys 2011:003

    Article  Google Scholar 

  15. Bauer M, Neubert M, Thamm A (2017) Collider probes of axion-like particles. JHEP 12:044

    Article  ADS  Google Scholar 

  16. Knapen S, Lin T, Lou HK, Melia T (2017) Searching for axionlike particles with ultraperipheral heavy-ion collisions. Phys Rev Lett 118:171801

    Article  ADS  Google Scholar 

  17. Cavallari F et al (2006) CMS ECAL intercalibration of ECAL crystals using laboratory measurements

    Google Scholar 

  18. Khachatryan V et al (2014) Observation of the diphoton decay of the Higgs boson and measurement of its properties. Eur Phys J C 74(10):3076

    Article  ADS  Google Scholar 

  19. Collaboration A (2012) Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.9 fb\(^{-1}\) of 7 TeV pp collision data taken with ATLAS detector at the LHC 7

    Google Scholar 

  20. Aaboud M et al (2019) Search for pairs of highly collimated photon-jets in \(pp\) collisions at \(\sqrt{s}=13 \rm TeV \) with the ATLAS detector. Phys Rev D 99:012008 Jan

    Article  ADS  Google Scholar 

  21. Aad G, Abbott B, Abdallah J, Abdinov O, Aben R, Abolins M, AbouZeid OS, Abramowicz H, Abreu H et al (2016) Search for new phenomena in events with at least three photons collected in pp collisions at \(\sqrt{s}\) = 8 tev with the atlas detector. Eur Phys J C 76(4):1–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Andrews .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrews, M. (2023). Theory and Phenomenology. In: Search for Exotic Higgs Boson Decays to Merged Diphotons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-25091-0_3

Download citation

Publish with us

Policies and ethics