Skip to main content

Variational Depth Networks: Uncertainty-Aware Monocular Self-supervised Depth Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13808))

Included in the following conference series:

Abstract

Using self-supervised learning, neural networks are trained to predict depth from a single image without requiring ground-truth annotations. However, they are susceptible to input ambiguities and it is therefore important to express the corresponding depth uncertainty. While there are a few truly monocular and self-supervised methods modelling uncertainty, none correlates well with errors in depth. To this end we present Variational Depth Networks (VDN): a probabilistic extension of the established monocular depth estimation framework, MonoDepth2, in which we leverage variational inference to learn a parametric, continuous distribution over depth, whose variance is interpreted as uncertainty. The utility of the obtained uncertainty is then assessed quantitatively in a 3D reconstruction task, using the ScanNet dataset, showing that the accuracy of the reconstructed 3D meshes highly correlates with the precision of the predicted distribution. Finally, we benchmark our results using 2D depth evaluation metrics on the KITTI dataset.

J. van Vugt—Work done while at Qualcomm Technologies Netherlands B.V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., Davison, A.J.: CodeSLAM-learning a compact, optimisable representation for dense visual slam. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2560–2568 (2018)

    Google Scholar 

  3. Božič, A., Palafox, P., Thies, J., Dai, A., Nießner, M.: TransformerFusion: monocular RGB scene reconstruction using transformers. arXiv preprint arXiv:2107.02191 (2021)

  4. Brickwedde, F., Abraham, S., Mester, R.: Mono-SF: multi-view geometry meets single-view depth for monocular scene flow estimation of dynamic traffic scenes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2780–2790 (2019)

    Google Scholar 

  5. Burkardt, J.: The truncated normal distribution. Department of Scientific Computing Website, Florida State University, pp. 1–35 (2014). https://people.sc.fsu.edu/jburkardt/presentations/truncated_normal.pdf

  6. Christian, J.A., Cryan, S.: A survey of lidar technology and its use in spacecraft relative navigation. In: AIAA Guidance, Navigation, and Control (GNC) Conference, p. 4641 (2013)

    Google Scholar 

  7. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  8. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5868–5877 (2017)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Dijk, T.V., Croon, G.D.: How do neural networks see depth in single images? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2183–2191 (2019)

    Google Scholar 

  11. Dillon, J.V., et al.: Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017)

  12. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv:1406.2283 (2014)

  13. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  14. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

  15. Girardeau-Montaut, D.: Cloudcompare. France: EDF R &D Telecom ParisTech (2016). https://www.cloudcompare.org/

  16. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  17. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  18. Graves, A.: Practical variational inference for neural networks. Adv. Neural Inf. Process. Syst. 24 (2011)

    Google Scholar 

  19. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  20. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004). https://doi.org/10.1017/cbo9780511811685

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Horaud, R., Hansard, M., Evangelidis, G., Ménier, C.: An overview of depth cameras and range scanners based on time-of-flight technologies. Mach. Vis. Appl. 27(7), 1005–1020 (2016). https://doi.org/10.1007/s00138-016-0784-4

    Article  Google Scholar 

  23. Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 652–667 (2018)

    Google Scholar 

  24. Johnston, A., Carneiro, G.: Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4756–4765 (2020)

    Google Scholar 

  25. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  26. Ke, T., Do, T., Vuong, K., Sartipi, K., Roumeliotis, S.I.: Deep multi-view depth estimation with predicted uncertainty. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9235–9241. IEEE (2021)

    Google Scholar 

  27. Keltjens, B., van Dijk, T., de Croon, G.: Self-supervised monocular depth estimation of untextured indoor rotated scenes. arXiv preprint arXiv:2106.12958 (2021)

  28. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)

  29. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic gradient descent. In: ICLR: International Conference on Learning Representations, pp. 1–15 (2015)

    Google Scholar 

  30. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6114

  31. Klodt, M., Vedaldi, A.: Supervising the new with the old: learning SFM from SFM. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 698–713 (2018)

    Google Scholar 

  32. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  33. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth map prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6647–6655 (2017)

    Google Scholar 

  35. Liu, C., Gu, J., Kim, K., Narasimhan, S.G., Kautz, J.: Neural RGB (R) D sensing: depth and uncertainty from a video camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10986–10995 (2019)

    Google Scholar 

  36. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  37. Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabinovich, A.: Atlas: end-to-end 3D scene reconstruction from posed images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part VII. LNCS, vol. 12352, pp. 414–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_25

    Chapter  Google Scholar 

  38. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2011)

    Google Scholar 

  39. Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. (ToG) 32(6), 1–11 (2013)

    Article  Google Scholar 

  40. Obukhov, A.: Truncated normal distribution in PyTorch (2020), https://github.com/toshas/torch_truncnorm

  41. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  42. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3227–3237 (2020)

    Google Scholar 

  43. Remondino, F., Stoppa, D.: TOF Range-imaging Cameras, vol. 68121. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-27523-4

    Book  Google Scholar 

  44. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 519–528. IEEE (2006)

    Google Scholar 

  45. Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: NeuralRecon: real-time coherent 3D reconstruction from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15598–15607 (2021)

    Google Scholar 

  46. Takahashi, H., Iwata, T., Yamanaka, Y., Yamada, M., Yagi, S.: Variational autoencoder with implicit optimal priors. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5066–5073 (2019)

    Google Scholar 

  47. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6243–6252 (2017)

    Google Scholar 

  48. Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on Artificial Intelligence and Statistics, pp. 1214–1223. PMLR (2018)

    Google Scholar 

  49. Ummenhofer, B., et al.: DeMoN: depth and motion network for learning monocular stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5038–5047 (2017)

    Google Scholar 

  50. Walz, S., Gruber, T., Ritter, W., Dietmayer, K.: Uncertainty depth estimation with gated images for 3D reconstruction. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2020)

    Google Scholar 

  51. Wang, C., Buenaposada, J.M., Zhu, R., Lucey, S.: Learning depth from monocular videos using direct methods. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2022–2030 (2018)

    Google Scholar 

  52. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)

    Google Scholar 

  53. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  54. Watson, J., Mac Aodha, O., Prisacariu, V., Brostow, G., Firman, M.: The temporal opportunist: self-supervised multi-frame monocular depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1164–1174 (2021)

    Google Scholar 

  55. Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison, A.: ElasticFusion: dense slam without a pose graph. In: Robotics: Science and Systems (2015)

    Google Scholar 

  56. Xu, H., et al.: Digging into uncertainty in self-supervised multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6078–6087 (2021)

    Google Scholar 

  57. Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse LiDAR data with depth-normal constraints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2811–2820 (2019)

    Google Scholar 

  58. Yang, N., Stumberg, L.v., Wang, R., Cremers, D.: D3VO: deep depth, deep pose and deep uncertainty for monocular visual odometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1281–1292 (2020)

    Google Scholar 

  59. Yang, N., Wang, R., Stuckler, J., Cremers, D.: Deep virtual stereo odometry: leveraging deep depth prediction for monocular direct sparse odometry. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 817–833 (2018)

    Google Scholar 

  60. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1983–1992 (2018)

    Google Scholar 

  61. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)

  62. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

Download references

Acknowledgements

We highly appreciate the constructive feedback and suggestions from our colleagues Mohsen Ghafoorian and Alex Bailo as well as the consistent support from Gerhard Reitmayr and Eduardo Esteves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Dikov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7536 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dikov, G., van Vugt, J. (2023). Variational Depth Networks: Uncertainty-Aware Monocular Self-supervised Depth Estimation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25085-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25084-2

  • Online ISBN: 978-3-031-25085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics