Abstract
We propose methods to automatically assess the conservation status of a habitat. Habitat monitoring is usually performed by botanists and other specialists in their field work, searching for the presence or lack of typical plant species (Evans D, Arvela M (2011) Assessment and reporting under Article 17 of the Habitats Directive. Explanatory Notes & Guidelines for the period 2007–2012. European Commission, Brussels.) and other elements (such as vegetation cover) that might indicate the degradation of a habitat. We present preliminary work that makes use of a robotic platform employed to help botanists in their tasks. Three methods are proposed. First a color segmentation method, to detect the amount of green in a given area, a detection method to automatically detect the presence of a given plant, and finally a classification method used to identify a plant in a single image.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Grant agreement No. 101016970, European Union’s Horizon 2020 Research and Innovation Programme - ICT-47-2020.
- 3.
- 4.
Douglas Evans and Marita Arvela. Assessment and reporting under article 17 of the habitats directive. explanatory notes & guidelines for the period 2007–2012. European Commission, Brussels, 2011.
- 5.
Habitats Directive. Council directive 92/43/EEC of 21 may 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union, 206:7–50, 1992.
- 6.
References
Bonari, G.EA.: Shedding light on typical species: implications for habitat monitoringl. Plant Sociol. 58(1), 157–166 (2021)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. corr abs/1610.02357 (2016). arXiv preprint arXiv:1610.02357 (2016)
Enkvetchakul, P., Surinta, O.: Effective data augmentation and training techniques for improving deep learning in plant leaf disease recognition. Appl. Sci. Eng. Progr. (2021)
Gao, Z., Li, M., Li, W., Yan, Q.: Classification of flowers under complex background using inception-v3 network. In: Proceedings of the 2020 4th International Conference on Deep Learning Technologies (ICDLT), pp. 113–117 (2020)
Garcia-Lamont, F., Cervantes, J., López, A., Rodriguez, L.: Segmentation of images by color features: a survey. Neurocomputing 292, 1–27 (2018)
Garcin, C., et al.: Pl@ ntnet-300k: a plant image dataset with high label ambiguity and a long-tailed distribution. In: NeurIPS 2021–35th Conference on Neural Information Processing Systems (2021)
Gigante, D., et al.: A methodological protocol for annex in habitat monitoring: the contribution of vegetation science. Plant Sociol. 53, 77–87 (2016)
Hamuda, E., Glavin, M., Jones, E.: A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 125, 184–199 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arxiv 2015. arXiv preprint arXiv:1512.03385 (2015)
Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: LayerCam: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875–5888 (2021)
Jiang, Y., Li, C., Xu, R., Sun, S., Robertson, J.S., Paterson, A.H.: Deepflower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field. Plant Methods 16(1), 1–17 (2020)
Jongman, R.: Biodiversity observation from local to global. Ecol. Indicators 33, 1–4 (2013)
Kaya, A., Keceli, A.S., Catal, C., Yalic, H.Y., Temucin, H., Tekinerdogan, B.: Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 158, 20–29 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 452–456. IEEE (2015)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)
Nguyen, T.T.N., Le, V., Le, T., Hai, V., Pantuwong, N., Yagi, Y.: Flower species identification using deep convolutional neural networks. In: AUN/SEED-Net Regional Conference for Computer and Information Engineering (2016)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Remagnino, P., Mayo, S., Wilkin, P., Cope, J., Kirkup, D.: Computational Botany. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53745-9
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-Cam: visual explanations from deep networks via gradient-based localization. arXiv preprint arXiv:1610.02391 (2016)
Szegedy, C., et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842, p. 1409 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567 (2015)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)
Acknowledgements
This research is supported by Grant Agreement No. 10101697, under the European Union’s Horizon2020 Research and Innovation Programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Manh, X.H. et al. (2023). Towards the Computational Assessment of the Conservation Status of a Habitat. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-25075-0_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25074-3
Online ISBN: 978-3-031-25075-0
eBook Packages: Computer ScienceComputer Science (R0)