Skip to main content

Towards the Computational Assessment of the Conservation Status of a Habitat

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

Abstract

We propose methods to automatically assess the conservation status of a habitat. Habitat monitoring is usually performed by botanists and other specialists in their field work, searching for the presence or lack of typical plant species (Evans D, Arvela M (2011) Assessment and reporting under Article 17 of the Habitats Directive. Explanatory Notes & Guidelines for the period 2007–2012. European Commission, Brussels.) and other elements (such as vegetation cover) that might indicate the degradation of a habitat. We present preliminary work that makes use of a robotic platform employed to help botanists in their tasks. Three methods are proposed. First a color segmentation method, to detect the amount of green in a given area, a detection method to automatically detect the presence of a given plant, and finally a classification method used to identify a plant in a single image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter02.pdf.

  2. 2.

    Grant agreement No. 101016970, European Union’s Horizon 2020 Research and Innovation Programme - ICT-47-2020.

  3. 3.

    https://ec.europa.eu/info/strategy/priorities-2019--2024/european-green-deal_en.

  4. 4.

    Douglas Evans and Marita Arvela. Assessment and reporting under article 17 of the habitats directive. explanatory notes & guidelines for the period 2007–2012. European Commission, Brussels, 2011.

  5. 5.

    Habitats Directive. Council directive 92/43/EEC of 21 may 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union, 206:7–50, 1992.

  6. 6.

    https://en.wikipedia.org/wiki/YUV.

References

  1. Bonari, G.EA.: Shedding light on typical species: implications for habitat monitoringl. Plant Sociol. 58(1), 157–166 (2021)

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. corr abs/1610.02357 (2016). arXiv preprint arXiv:1610.02357 (2016)

  4. Enkvetchakul, P., Surinta, O.: Effective data augmentation and training techniques for improving deep learning in plant leaf disease recognition. Appl. Sci. Eng. Progr. (2021)

    Google Scholar 

  5. Gao, Z., Li, M., Li, W., Yan, Q.: Classification of flowers under complex background using inception-v3 network. In: Proceedings of the 2020 4th International Conference on Deep Learning Technologies (ICDLT), pp. 113–117 (2020)

    Google Scholar 

  6. Garcia-Lamont, F., Cervantes, J., López, A., Rodriguez, L.: Segmentation of images by color features: a survey. Neurocomputing 292, 1–27 (2018)

    Article  Google Scholar 

  7. Garcin, C., et al.: Pl@ ntnet-300k: a plant image dataset with high label ambiguity and a long-tailed distribution. In: NeurIPS 2021–35th Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  8. Gigante, D., et al.: A methodological protocol for annex in habitat monitoring: the contribution of vegetation science. Plant Sociol. 53, 77–87 (2016)

    Google Scholar 

  9. Hamuda, E., Glavin, M., Jones, E.: A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 125, 184–199 (2016)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arxiv 2015. arXiv preprint arXiv:1512.03385 (2015)

  11. Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: LayerCam: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875–5888 (2021)

    Article  Google Scholar 

  12. Jiang, Y., Li, C., Xu, R., Sun, S., Robertson, J.S., Paterson, A.H.: Deepflower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field. Plant Methods 16(1), 1–17 (2020)

    Article  Google Scholar 

  13. Jongman, R.: Biodiversity observation from local to global. Ecol. Indicators 33, 1–4 (2013)

    Google Scholar 

  14. Kaya, A., Keceli, A.S., Catal, C., Yalic, H.Y., Temucin, H., Tekinerdogan, B.: Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 158, 20–29 (2019)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  16. Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 452–456. IEEE (2015)

    Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)

    Article  Google Scholar 

  19. Nguyen, T.T.N., Le, V., Le, T., Hai, V., Pantuwong, N., Yagi, Y.: Flower species identification using deep convolutional neural networks. In: AUN/SEED-Net Regional Conference for Computer and Information Engineering (2016)

    Google Scholar 

  20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Remagnino, P., Mayo, S., Wilkin, P., Cope, J., Kirkup, D.: Computational Botany. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53745-9

    Book  Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  25. Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-Cam: visual explanations from deep networks via gradient-based localization. arXiv preprint arXiv:1610.02391 (2016)

  26. Szegedy, C., et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842, p. 1409 (2014)

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567 (2015)

  28. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  29. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Grant Agreement No. 10101697, under the European Union’s Horizon2020 Research and Innovation Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Remagnino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manh, X.H. et al. (2023). Towards the Computational Assessment of the Conservation Status of a Habitat. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics