Skip to main content

Meta-Causal Feature Learning for Out-of-Distribution Generalization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

Abstract

Causal inference has become a powerful tool to handle the out-of-distribution (OOD) generalization problem, which aims to extract the invariant features. However, conventional methods apply causal learners from multiple data splits, which may incur biased representation learning from imbalanced data distributions and difficulty in invariant feature learning from heterogeneous sources. To address these issues, this paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL). Specifically, the BTG module learns to generate balanced subsets by a self-learned partitioning algorithm with constraints on the proportions of sample classes and contexts. The MCFL module trains a meta-learner adapted to different distributions. Experiments conducted on NICO++ dataset verified that BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achille, A., Soatto, S.: Information dropout: Learning optimal representations through noisy computation. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2897–2905 (2018)

    Article  Google Scholar 

  2. Ahuja, K., Shanmugam, K., Varshney, K., Dhurandhar, A.: Invariant risk minimization games. In: International Conference on Machine Learning. pp. 145–155. PMLR (2020)

    Google Scholar 

  3. Arjovsky, M.: Out of distribution generalization in machine learning. Ph.D. thesis, New York University (2020)

    Google Scholar 

  4. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  5. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain generalization using meta-regularization. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  6. Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., Pal, C.: A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912 (2019)

  7. Clark, C., Yatskar, M., Zettlemoyer, L.: Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. arXiv preprint arXiv:1909.03683 (2019)

  8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine learning. pp. 1126–1135. PMLR (2017)

    Google Scholar 

  9. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  10. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4367–4375 (2018)

    Google Scholar 

  11. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: International Conference on Machine Learning. pp. 2376–2384. PMLR (2019)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  13. He, Y., Shen, Z., Cui, P.: Towards non-iid image classification: A dataset and baselines. Pattern Recogn. 110, 107383 (2021)

    Article  Google Scholar 

  14. Heinze-Deml, C., Peters, J., Meinshausen, N.: Invariant causal prediction for nonlinear models. Journal of Causal Inference 6(2) (2018)

    Google Scholar 

  15. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M., et al.: The many faces of robustness: A critical analysis of out-of-distribution generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8340–8349 (2021)

    Google Scholar 

  16. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  17. Hospedales, T.M., Antoniou, A., Micaelli, P., Storkey, A.J.: Meta-learning in neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence (2021)

    Google Scholar 

  18. Jin, W., Barzilay, R., Jaakkola, T.: Domain extrapolation via regret minimization. arXiv preprint arXiv:2006.03908 (2020)

  19. Jin, X., Lan, C., Zeng, W., Chen, Z.: Style normalization and restitution for domain generalization and adaptation. IEEE Transactions on Multimedia (2021)

    Google Scholar 

  20. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE transactions on neural networks and learning systems 29(8), 3573–3587 (2017)

    Google Scholar 

  21. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: Training deep neural networks with biased data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9012–9020 (2019)

    Google Scholar 

  22. Kim, H., Shin, S., Jang, J., Song, K., Joo, W., Kang, W., Moon, I.C.: Counterfactual fairness with disentangled causal effect variational autoencoder. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 8128–8136 (2021)

    Google Scholar 

  23. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  24. Mahajan, Dhruv, Girshick, Ross, Ramanathan, Vignesh, He, Kaiming, Paluri, Manohar, Li, Yixuan, Bharambe, Ashwin, van der Maaten, Laurens: Exploring the limits of weakly supervised pretraining. In: Ferrari, Vittorio, Hebert, Martial, Sminchisescu, Cristian, Weiss, Yair (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12

    Chapter  Google Scholar 

  25. Meinshausen, N., Bühlmann, P.: Maximin effects in inhomogeneous large-scale data. Ann. Stat. 43(4), 1801–1830 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect. Basic books (2018)

    Google Scholar 

  27. Peters, J., Bühlmann, P., Meinshausen, N.: Causal inference by using invariant prediction: identification and confidence intervals. J. R. Stat. Soc. Ser B (Stat. Methodol. 78(5), 947–1012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pfister, N., Bühlmann, P., Peters, J.: Invariant causal prediction for sequential data. J. Am. Stat. Assoc. 114(527), 1264–1276 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ren, M., Liao, R., Fetaya, E., Zemel, R.: Incremental few-shot learning with attention attractor networks. In: 32nd Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  31. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: European Conference on Computer Vision, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

  32. Shen, Z., Cui, P., Kuang, K., Li, B., Chen, P.: Causally regularized learning with agnostic data selection bias. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 411–419 (2018)

    Google Scholar 

  33. Shen, Z., et al.: Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624 (2021)

  34. Subbaswamy, A., Saria, S.: Counterfactual normalization: proactively addressing dataset shift and improving reliability using causal mechanisms. arXiv preprint arXiv:1808.03253 (2018)

  35. Tang, K., Huang, J., Zhang, H.: Long-tailed classification by keeping the good and removing the bad momentum causal effect. Adv. Neural. Inf. Process. Syst. 33, 1513–1524 (2020)

    Google Scholar 

  36. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. arXiv preprint arXiv:2001.08735 (2020)

  37. Wang, J., et al.: Generalizing to unseen domains: A survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering (2022)

    Google Scholar 

  38. Wang, R., Yi, M., Chen, Z., Zhu, S.: Out-of-distribution generalization with causal invariant transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 375–385 (2022)

    Google Scholar 

  39. Wang, T., Zhou, C., Sun, Q., Zhang, H.: Causal attention for unbiased visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3091–3100 (2021)

    Google Scholar 

  40. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  41. Xu, Y., Li, Y.L., Li, J., Lu, C.: Constructing balance from imbalance for long-tailed image recognition. arXiv preprint arXiv:2208.02567 (2022)

  42. Yue, Z., Sun, Q., Hua, X.S., Zhang, H.: Transporting causal mechanisms for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8599–8608 (2021)

    Google Scholar 

  43. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  44. Zhang, X., Zhou, L., Xu, R., Cui, P., Shen, Z., Liu, H.: Nico++: Towards better benchmarking for domain generalization. ArXiv abs/2204.08040 (2022)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by the Excellent Youth Scholars Program of Shandong Province (Grant no. 2022HWYQ-048) and the Oversea Innovation Team Project of the “20 Regulations for New Universities" funding program of Jinan (Grant no. 2021GXRC073)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2023). Meta-Causal Feature Learning for Out-of-Distribution Generalization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics