Skip to main content

One Ontology to Rule Them All: Corner Case Scenarios for Autonomous Driving

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

Abstract

The core obstacle towards a large-scale deployment of autonomous vehicles currently lies in the long tail of rare events. These are extremely challenging since they do not occur often in the utilized training data for deep neural networks. To tackle this problem, we propose the generation of additional synthetic training data, covering a wide variety of corner case scenarios. As ontologies can represent human expert knowledge while enabling computational processing, we use them to describe scenarios. Our proposed master ontology is capable to model scenarios from all common corner case categories found in the literature. From this one master ontology, arbitrary scenario-describing ontologies can be derived. In an automated fashion, these can be converted into the OpenSCENARIO format and subsequently executed in simulation. This way, also challenging test and evaluation scenarios can be generated.

D. Bogdoll and S. Guneshka—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We follow the definitions of scene and scenario by Ulbrich et al. [41], where a scene is a snapshot, and a scenario consists of successive scenes.

  2. 2.

    CARLA version 0.9.13 was utilized.

References

  1. Armand, A., Filliat, D., Ibañez-Guzman, J.: Ontology-based context awareness for driving assistance systems. In: IEEE Intelligent Vehicles Symposium Proceedings (2014)

    Google Scholar 

  2. ASAM: ASAM OpenSCENARIO. https://www.asam.net/standards/detail/openscenario. Accessed 28 Feb 2022

  3. ASAM: ASAM OpenXOntology. https://www.asam.net/project-detail/asam-openxontology/. Accessed 28 Feb 2022

  4. ASAM: OpenSCENARIO Documentation. https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html. Accessed 28 Jan 2022

  5. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV) (2018)

    Google Scholar 

  6. Bogdoll, D., et al.: Description of corner cases in automated driving: goals and challenges. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (2021)

    Google Scholar 

  7. Breitenstein, J., Termöhlen, J.A., Lipinski, D., Fingscheidt, T.: Systematization of corner cases for visual perception in automated driving. In: IEEE Intelligent Vehicles Symposium (IV) (2020)

    Google Scholar 

  8. Breitenstein, J., Termöhlen, J.A., Lipinski, D., Fingscheidt, T.: Corner cases for visual perception in automated driving: some guidance on detection approaches. arXiv:2102.05897 (2021)

  9. CARLA: CARLA Blueprint Library. https://carla.readthedocs.io/en/latest/bp_library/. Accessed 28 Feb 2022

  10. CARLA: CARLA Simulator. https://carla.org/. Accessed 28 Feb 2022

  11. CARLA: Scenario Runner Github. https://github.com/carla-simulator/scenario_runner. Accessed 28 Feb 2022

  12. Chen, W., Kloul, L.: An ontology-based approach to generate the advanced driver assistance use cases of highway traffic. In: Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD) (2018)

    Google Scholar 

  13. Ding, W., Chen, B., Li, B., Eun, K.J., Zhao, D.: Multimodal safety-critical scenarios generation for decision-making algorithms evaluation. IEEE Robot. Autom. Lett. 6, 1551–1558 (2021)

    Google Scholar 

  14. esmini: Esmini github. https://github.com/esmini/esmini. Accessed 28 Feb 2022

  15. Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A model for ontology-based scene description for context-aware driver assistance systems. In: International ICST Conference on Ambient Media and Systems (2010)

    Google Scholar 

  16. de Gelder, E., et al.: Towards an ontology for scenario definition for the assessment of automated vehicles: an object-oriented framework. IEEE Trans. Intell. Veh. 7(2), 300–314 (2022)

    Article  Google Scholar 

  17. (Germany), B.: Verordnung zur Regelung des Betriebs von Kraftfahrzeugen mit automatisierter und autonomer Fahrfunktion und zur Änderung straßenverkehrsrechtlicher Vorschriften. https://dserver.bundestag.de/brd/2022/0086-22.pdf. Accessed 15 June 2022

  18. (Germany), B.: Entwurf eines Gesetzes zur Änderung des Straßenverkehrsgesetzes und des Pflichtversicherungsgesetzes - Gesetz zum autonomen Fahren (2021). https://www.bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-strassenverkehrsgesetz-pflichtversicherungsgesetz-autonomes-fahren.pdf?__blob=publicationFile. Accessed 15 June 2022

  19. Guneshka, S.: Ontology-based corner case scenario simulation for autonomous driving. Bachelor thesis, Karlsruhe Institute of Technology (KIT) (2022)

    Google Scholar 

  20. Hanselmann, N., Renz, K., Chitta, K., Bhattacharyya, A., Geiger, A.: King: generating safety-critical driving scenarios for robust imitation via kinematics gradients. arXiv:2204.13683 (2022)

  21. Heidecker, F., et al.: An application-driven conceptualization of corner cases for perception in highly automated driving. In: IEEE Intelligent Vehicles Symposium (IV) (2021)

    Google Scholar 

  22. Herrmann, M., et al.: Using ontologies for dataset engineering in automotive AI applications. In: Design, Automation and Test in Europe Conference and Exhibition (DATE) (2022)

    Google Scholar 

  23. Huang, L., Liang, H., Yu, B., Li, B., Zhu, H.: Ontology-based driving scene modeling, situation assessment and decision making for autonomous vehicles. In: Asia-Pacific Conference on Intelligent Robot Systems (ACIRS) (2019)

    Google Scholar 

  24. Hummel, B.: Description logic for scene understanding at the example of urban road intersections. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2009)

    Google Scholar 

  25. Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: IEEE Intelligent Vehicles Symposium (IV) (2011)

    Google Scholar 

  26. Karpathy, A.: Tesla Autonomoy Day (2019). https://youtu.be/Ucp0TTmvqOE?t=8671. Accessed 15 June 2022

  27. Klueck, F., Li, Y., Nica, M., Tao, J., Wotawa, F.: Using ontologies for test suites generation for automated and autonomous driving functions. In: IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (2018)

    Google Scholar 

  28. Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. Inf. Softw. Technol. 117, 106200 (2020)

    Article  Google Scholar 

  29. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional to logical scenarios: Detailing a keyword-based scenario description for execution in a simulation environment. In: IEEE Intelligent Vehicles Symposium (IV) (2019)

    Google Scholar 

  30. Minute, M.: Trees falling on road (2017). https://www.youtube.com/watch?v=3VsLeUtXvxk &ab_channel=Mad1Minute. Accessed 21 July 2022

  31. Noy, N., Mcguinness, D.: Ontology development 101: a guide to creating your first ontology. In: Knowledge Systems Laboratory, vol. 32 (2001)

    Google Scholar 

  32. On-Road Automated Driving Committee: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Standard J3016–202104, SAE International (2021)

    Google Scholar 

  33. OWLReady2: Welcome to Owlready2’s documentation! (2021). https://owlready2.readthedocs.io/en/v0.36/. Accessed 28 Feb 2022

  34. Pretschner, A., Hauer, F., Schmidt, T.: Tests für automatisierte und autonome Fahrsysteme. Informatik Spektrum 44, 214–218 (2021)

    Google Scholar 

  35. pyoscx: scenariogeneration (2022). https://github.com/pyoscx/scenariogeneration. Accessed 20 July 2022

  36. Rempe, D., Philion, J., Guibas, L.J., Fidler, S., Litany, O.: Generating useful accident-prone driving scenarios via a learned traffic prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  37. Schoener, H.P., Mazzega, J.: Introduction to Pegasus. In: China Autonomous Driving Testing Technology Innovation Conference (2018)

    Google Scholar 

  38. Tahir, Z., Alexander, R.: Intersection focused situation coverage-based verification and validation framework for autonomous vehicles implemented in Carla. In: Mazal, J., et al. (eds.) Modelling and Simulation for Autonomous Systems (2022)

    Google Scholar 

  39. Tao, J., Li, Y., Wotawa, F., Felbinger, H., Nica, M.: On the industrial application of combinatorial testing for autonomous driving functions. In: IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW) (2019)

    Google Scholar 

  40. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Trans. Intell. Veh. 5(2), 265–280 (2020)

    Article  Google Scholar 

  41. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: Proceedings of ITSC (2015)

    Google Scholar 

  42. Wang, J., et al.: AdvSim: generating safety-critical scenarios for self-driving vehicles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  43. Waymo: Waymo One (2022). https://waymo.com/waymo-one/. Accessed 15 June 2022

  44. Wotawa, F., Li, Y.: From ontologies to input models for combinatorial testing. In: International Conference on Testing Software and Systems (ICTSS) (2018)

    Google Scholar 

  45. Zaid, T.: Intersection focused situation coverage-based verification and validation framework for autonomous vehicles implemented in CARLA (2022). https://github.com/zaidtahirbutt/Situation-Coverage-based-AV-Testing-Framework-in-CARLA. Accessed 20 July 2022

  46. Zhao, L., Ichise, R., Liu, Z., Mita, S., Sasaki, Y.: Ontology-based driving decision making: a feasibility study at uncontrolled intersections. IEICE Trans. Inf. Syst. 100(D(7)), 1425–1439 (2017)

    Google Scholar 

Download references

Acknowledgment

This work results partly from the project KI Data Tooling (19A20001J) funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bogdoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogdoll, D., Guneshka, S., Zöllner, J.M. (2023). One Ontology to Rule Them All: Corner Case Scenarios for Autonomous Driving. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics