Abstract
The core obstacle towards a large-scale deployment of autonomous vehicles currently lies in the long tail of rare events. These are extremely challenging since they do not occur often in the utilized training data for deep neural networks. To tackle this problem, we propose the generation of additional synthetic training data, covering a wide variety of corner case scenarios. As ontologies can represent human expert knowledge while enabling computational processing, we use them to describe scenarios. Our proposed master ontology is capable to model scenarios from all common corner case categories found in the literature. From this one master ontology, arbitrary scenario-describing ontologies can be derived. In an automated fashion, these can be converted into the OpenSCENARIO format and subsequently executed in simulation. This way, also challenging test and evaluation scenarios can be generated.
D. Bogdoll and S. Guneshka—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We follow the definitions of scene and scenario by Ulbrich et al. [41], where a scene is a snapshot, and a scenario consists of successive scenes.
- 2.
CARLA version 0.9.13 was utilized.
References
Armand, A., Filliat, D., Ibañez-Guzman, J.: Ontology-based context awareness for driving assistance systems. In: IEEE Intelligent Vehicles Symposium Proceedings (2014)
ASAM: ASAM OpenSCENARIO. https://www.asam.net/standards/detail/openscenario. Accessed 28 Feb 2022
ASAM: ASAM OpenXOntology. https://www.asam.net/project-detail/asam-openxontology/. Accessed 28 Feb 2022
ASAM: OpenSCENARIO Documentation. https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html. Accessed 28 Jan 2022
Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV) (2018)
Bogdoll, D., et al.: Description of corner cases in automated driving: goals and challenges. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (2021)
Breitenstein, J., Termöhlen, J.A., Lipinski, D., Fingscheidt, T.: Systematization of corner cases for visual perception in automated driving. In: IEEE Intelligent Vehicles Symposium (IV) (2020)
Breitenstein, J., Termöhlen, J.A., Lipinski, D., Fingscheidt, T.: Corner cases for visual perception in automated driving: some guidance on detection approaches. arXiv:2102.05897 (2021)
CARLA: CARLA Blueprint Library. https://carla.readthedocs.io/en/latest/bp_library/. Accessed 28 Feb 2022
CARLA: CARLA Simulator. https://carla.org/. Accessed 28 Feb 2022
CARLA: Scenario Runner Github. https://github.com/carla-simulator/scenario_runner. Accessed 28 Feb 2022
Chen, W., Kloul, L.: An ontology-based approach to generate the advanced driver assistance use cases of highway traffic. In: Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD) (2018)
Ding, W., Chen, B., Li, B., Eun, K.J., Zhao, D.: Multimodal safety-critical scenarios generation for decision-making algorithms evaluation. IEEE Robot. Autom. Lett. 6, 1551–1558 (2021)
esmini: Esmini github. https://github.com/esmini/esmini. Accessed 28 Feb 2022
Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A model for ontology-based scene description for context-aware driver assistance systems. In: International ICST Conference on Ambient Media and Systems (2010)
de Gelder, E., et al.: Towards an ontology for scenario definition for the assessment of automated vehicles: an object-oriented framework. IEEE Trans. Intell. Veh. 7(2), 300–314 (2022)
(Germany), B.: Verordnung zur Regelung des Betriebs von Kraftfahrzeugen mit automatisierter und autonomer Fahrfunktion und zur Änderung straßenverkehrsrechtlicher Vorschriften. https://dserver.bundestag.de/brd/2022/0086-22.pdf. Accessed 15 June 2022
(Germany), B.: Entwurf eines Gesetzes zur Änderung des Straßenverkehrsgesetzes und des Pflichtversicherungsgesetzes - Gesetz zum autonomen Fahren (2021). https://www.bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-strassenverkehrsgesetz-pflichtversicherungsgesetz-autonomes-fahren.pdf?__blob=publicationFile. Accessed 15 June 2022
Guneshka, S.: Ontology-based corner case scenario simulation for autonomous driving. Bachelor thesis, Karlsruhe Institute of Technology (KIT) (2022)
Hanselmann, N., Renz, K., Chitta, K., Bhattacharyya, A., Geiger, A.: King: generating safety-critical driving scenarios for robust imitation via kinematics gradients. arXiv:2204.13683 (2022)
Heidecker, F., et al.: An application-driven conceptualization of corner cases for perception in highly automated driving. In: IEEE Intelligent Vehicles Symposium (IV) (2021)
Herrmann, M., et al.: Using ontologies for dataset engineering in automotive AI applications. In: Design, Automation and Test in Europe Conference and Exhibition (DATE) (2022)
Huang, L., Liang, H., Yu, B., Li, B., Zhu, H.: Ontology-based driving scene modeling, situation assessment and decision making for autonomous vehicles. In: Asia-Pacific Conference on Intelligent Robot Systems (ACIRS) (2019)
Hummel, B.: Description logic for scene understanding at the example of urban road intersections. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2009)
Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: IEEE Intelligent Vehicles Symposium (IV) (2011)
Karpathy, A.: Tesla Autonomoy Day (2019). https://youtu.be/Ucp0TTmvqOE?t=8671. Accessed 15 June 2022
Klueck, F., Li, Y., Nica, M., Tao, J., Wotawa, F.: Using ontologies for test suites generation for automated and autonomous driving functions. In: IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (2018)
Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. Inf. Softw. Technol. 117, 106200 (2020)
Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional to logical scenarios: Detailing a keyword-based scenario description for execution in a simulation environment. In: IEEE Intelligent Vehicles Symposium (IV) (2019)
Minute, M.: Trees falling on road (2017). https://www.youtube.com/watch?v=3VsLeUtXvxk &ab_channel=Mad1Minute. Accessed 21 July 2022
Noy, N., Mcguinness, D.: Ontology development 101: a guide to creating your first ontology. In: Knowledge Systems Laboratory, vol. 32 (2001)
On-Road Automated Driving Committee: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Standard J3016–202104, SAE International (2021)
OWLReady2: Welcome to Owlready2’s documentation! (2021). https://owlready2.readthedocs.io/en/v0.36/. Accessed 28 Feb 2022
Pretschner, A., Hauer, F., Schmidt, T.: Tests für automatisierte und autonome Fahrsysteme. Informatik Spektrum 44, 214–218 (2021)
pyoscx: scenariogeneration (2022). https://github.com/pyoscx/scenariogeneration. Accessed 20 July 2022
Rempe, D., Philion, J., Guibas, L.J., Fidler, S., Litany, O.: Generating useful accident-prone driving scenarios via a learned traffic prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Schoener, H.P., Mazzega, J.: Introduction to Pegasus. In: China Autonomous Driving Testing Technology Innovation Conference (2018)
Tahir, Z., Alexander, R.: Intersection focused situation coverage-based verification and validation framework for autonomous vehicles implemented in Carla. In: Mazal, J., et al. (eds.) Modelling and Simulation for Autonomous Systems (2022)
Tao, J., Li, Y., Wotawa, F., Felbinger, H., Nica, M.: On the industrial application of combinatorial testing for autonomous driving functions. In: IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW) (2019)
Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Trans. Intell. Veh. 5(2), 265–280 (2020)
Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: Proceedings of ITSC (2015)
Wang, J., et al.: AdvSim: generating safety-critical scenarios for self-driving vehicles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Waymo: Waymo One (2022). https://waymo.com/waymo-one/. Accessed 15 June 2022
Wotawa, F., Li, Y.: From ontologies to input models for combinatorial testing. In: International Conference on Testing Software and Systems (ICTSS) (2018)
Zaid, T.: Intersection focused situation coverage-based verification and validation framework for autonomous vehicles implemented in CARLA (2022). https://github.com/zaidtahirbutt/Situation-Coverage-based-AV-Testing-Framework-in-CARLA. Accessed 20 July 2022
Zhao, L., Ichise, R., Liu, Z., Mita, S., Sasaki, Y.: Ontology-based driving decision making: a feasibility study at uncontrolled intersections. IEICE Trans. Inf. Syst. 100(D(7)), 1425–1439 (2017)
Acknowledgment
This work results partly from the project KI Data Tooling (19A20001J) funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bogdoll, D., Guneshka, S., Zöllner, J.M. (2023). One Ontology to Rule Them All: Corner Case Scenarios for Autonomous Driving. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-25072-9_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25071-2
Online ISBN: 978-3-031-25072-9
eBook Packages: Computer ScienceComputer Science (R0)