Skip to main content

Learning to Joint Remosaic and Denoise in Quad Bayer CFA via Universal Multi-scale Channel Attention Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

Abstract

The color filter array widely used in smart phones is mainly Quad Bayer and Bayer. Quad Bayer color filter array (QBC) is a filter shared by four pixels, which can improve the image quality by averaging four pixels in the 2\(\,\times \,\)2 neighborhood under low light conditions. From low-resolution Bayer to full-resolution Bayer has become a very challenging research, especially in the presence of noise. Considering denoise and remosaic, we propose a general two-stage framework JRD-QBC (Joint Remosaic and Denoise in Quad Bayer CFA), including denoise and remosaic. To begin with, for the denoise phase, in order to ensure the difference of each color channel recovery, we convert the input to hollow QBC, and then enter our backbone network, including source encoder module, feature refinement module and final prediction module. After that, get a clean QBC and then use the same network structure to remosaic to generate Bayer. Extensive experiments demonstrate the proposed two-stage method has a good effect in quantitative indicators and subjective vision.

X. Wu and Z. Fan—Both authors contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A Sharif, S., Naqvi, R.A., Biswas, M.: Beyond joint demosaicking and denoising: an image processing pipeline for a pixel-bin image sensor. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 233–242 (2021)

    Google Scholar 

  2. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)

    Google Scholar 

  3. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  4. Anaya, J., Barbu, A.: Renoir-a dataset for real low-light image noise reduction. J. Vis. Commun. Image Represent. 51, 144–154 (2018)

    Article  Google Scholar 

  5. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  6. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  7. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Image Processing: Algorithms and Systems VI, vol. 6812, pp. 62–73. SPIE (2008)

    Google Scholar 

  10. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  11. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hirakawa, K., Parks, T.W.: Joint demosaicing and denoising. IEEE Trans. Image Process. 15(8), 2146–2157 (2006)

    Article  Google Scholar 

  14. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

    Google Scholar 

  15. Kim, B.-H., Song, J., Ye, J.C., Baek, J.H.: PyNET-CA: enhanced PyNET with channel attention for end-to-end mobile image signal processing. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 202–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_12

    Chapter  Google Scholar 

  16. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  17. Lukac, R., Plataniotis, K.N.: Color filter arrays: design and performance analysis. IEEE Trans. Consum. Electron. 51(4), 1260–1267 (2005)

    Article  Google Scholar 

  18. Lukac, R., Plataniotis, K.N.: Universal demosaicking for imaging pipelines with an RGB color filter array. Pattern Recogn. 38(11), 2208–2212 (2005)

    Article  Google Scholar 

  19. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279. IEEE (2009)

    Google Scholar 

  20. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Wang, Y., Huang, H., Xu, Q., Liu, J., Liu, Y., Wang, J.: Practical deep raw image denoising on mobile devices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_1

    Chapter  Google Scholar 

  23. Wilson, P.: Bayer pattern. https://www.sciencedirect.com/topics/engineering/bayer-pattern

  24. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  25. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  26. Zhu, F., Chen, G., Heng, P.A.: From noise modeling to blind image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 420–429 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Fan, Z., Zheng, J., Wu, Y., Zhang, F. (2023). Learning to Joint Remosaic and Denoise in Quad Bayer CFA via Universal Multi-scale Channel Attention Network. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics