Skip to main content

Towards Autonomous Grading in the Real World

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13804))

Included in the following conference series:

  • 1007 Accesses

Abstract

Surface grading is an integral part of the construction pipeline. Here, a dozer, which is a key machinery tool in any construction site, is required to level an uneven area containing pre-dumped sand piles. In this work, we aim to tackle the problem of autonomous surface grading on real-world scenarios. We design both a realistic physical simulation and a scaled real-world prototype environment mimicking the real dozer dynamics and sensory information. We establish heuristics and learning strategies in order to solve the problem. Through extensive experimentation, we show that although heuristics are capable of tackling the problem in a clean and noise-free simulated environment, they fail catastrophically when facing real-world scenarios. However, we show that the simulation can be leveraged to guide a learning agent, which can generalize and solve the task both in simulation and in a scaled prototype environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caterpillar: D6/D6 XE track-type tractors specifications. https://s7d2.scene7.com/is/content/Caterpillar/CM20181217-51568-10948

  2. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Hirayama, M., Guivant, J., Katupitiya, J., Whitty, M.: Path planning for autonomous bulldozers. Mechatronics 58, 20–38 (2019)

    Google Scholar 

  5. Kim, W., Pavlov, C., Johnson, A.M.: Developing a simple model for sand-tool interaction and autonomously shaping sand. arXiv:1908.02745 (2019)

  6. Kurinov, I., Orzechowski, G., Hämäläinen, P., Mikkola, A.: Automated excavator based on reinforcement learning and multibody system dynamics. IEEE Access 8, 213998–214006 (2020)

    Article  Google Scholar 

  7. Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., Scaramuzza, D.: Learning high-speed flight in the wild. Sci. Robot. 6(59), eabg5810 (2021)

    Google Scholar 

  8. Miron, Y., Coscas, Y.: S-flow GAN (2019)

    Google Scholar 

  9. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3803–3810. IEEE (2018)

    Google Scholar 

  10. Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817–2826. PMLR (2017)

    Google Scholar 

  11. Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J., Khansari, M.: RL-CycleGAN: reinforcement learning aware simulation-to-real. In: Proceedings of the IEEE/CVF CVPR, pp. 11157–11166 (2020)

    Google Scholar 

  12. Reece, A.R.: Introduction to terrain vehicle systems: M. G. Bekker, Univ. of Michigan Press, Ann Arbor (1969). \$27.50. J. Terramech. 7, 75–77 (1970)

    Google Scholar 

  13. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018)

    Article  Google Scholar 

  14. Ross, C., Miron, Y., Goldfracht, Y., Di Castro, D.: AGPNet-autonomous grading policy network. arXiv preprint arXiv:2112.10877 (2021)

  15. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning to simulate complex physics with graph networks. In: International Conference on Machine Learning, pp. 8459–8468. PMLR (2020)

    Google Scholar 

  16. Stentz, A., Bares, J., Singh, S., Rowe, P.: A robotic excavator for autonomous truck loading. Auton. Robot. 7(2), 175–186 (1999)

    Article  Google Scholar 

  17. Sulsky, D., Chen, Z., Schreyer, H.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1), 179–196 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT press (2018)

    Google Scholar 

  19. Tessler, C., Efroni, Y., Mannor, S.: Action robust reinforcement learning and applications in continuous control. In: ICML, pp. 6215–6224. PMLR (2019)

    Google Scholar 

  20. Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. 22(5–6), 544–557 (2009)

    Article  MATH  Google Scholar 

  21. Wiesemann, W., Kuhn, D., Rustem, B.: Robust Markov decision processes. Math. Oper. Res. 38(1), 1–208 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Goldfracht .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 145871 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miron, Y., Goldfracht, Y., Castro, D.D. (2023). Towards Autonomous Grading in the Real World. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics