Skip to main content

Towards Self-Supervised and Weight-preserving Neural Architecture Search

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13804))

Included in the following conference series:

Abstract

Neural architecture search (NAS) techniques can discover outstanding network architecture while saving tremendous labor from human experts. Recent advancements further reduce the computational overhead to an affordable level. However, it is still cumbersome to deploy NAS in real-world applications due to the fussy procedures and the supervised learning paradigm. In this work, we propose the self-supervised and weight-preserving neural architecture search (SSWP-NAS) as an extension of the current NAS framework to allow the self-supervision and retain the concomitant weights discovered during the search stage. As such, we merge the process of architecture search and weight pre-training, and simplify the workflow of NAS to a one-stage and proxy-free procedure. The searched architectures can achieve state-of-the-art accuracy on CIFAR-10, CIFAR-100, and ImageNet datasets without using manual labels. Moreover, experiments demonstrate that using the concomitant weights as initialization consistently outperforms the random initialization and a separate weight pre-training process by a clear margin under semi-supervised learning scenarios. Codes are available at https://github.com/LzVv123456/SSWP-NAS.

Z. Li and Y. Gao—Equal contributions.

Y. Gao and Z. Zha—This work was done during the internship at SenseTime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anandalingam, G., Friesz, T.L.: Hierarchical optimization: an introduction. Ann. Oper. Res. 34(1), 1–11 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: International Conference on Learning Representations (2019)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. (2020) arXiv preprint arXiv:2002.05709

  4. Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search: bridging the depth gap between search and evaluation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1294–1303 (2019)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple siamese representation learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753 (2021)

    Google Scholar 

  6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization (2007).https://doi.org/10.1007/s10479-007-0176-2

  7. Doersch, C., Gupta, A.K., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1422–1430 (2015)

    Google Scholar 

  8. Ghiasi, G., Lin, T.Y., Pang, R., Le, Q.V.: NAS-FPN: Learning scalable feature pyramid architecture for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7029–7038 (2019)

    Google Scholar 

  9. Grill, J.B., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc. 33, pp. 21271–21284 (2020)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020)

    Google Scholar 

  11. He, K., Girshick, R.B., Dollár, P.: Rethinking imagenet pre-training. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4917–4926 (2019)

    Google Scholar 

  12. Howard, A.G., et al.: Searching for mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314–1324 (2019)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Kaplan, S., Giryes, R.: Self-Supervised neural architecture search. CoRR abs/2007.01500 (2020)

    Google Scholar 

  15. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep. (2009)

    Google Scholar 

  16. Li, J., Zhou, P., Xiong, C., Hoi, S.: Prototypical contrastive learning of unsupervised representations. In: International Conference on Learning Representations (2021)

    Google Scholar 

  17. Liang, H., et al.: DARTS+: improved differentiable architecture search with early stopping. CoRR abs/1909.06035 (2019)

    Google Scholar 

  18. Liu, C., et al.: Auto-DeepLab: Hierarchical neural architecture search for semantic image segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 82–92 (2019)

    Google Scholar 

  19. Liu, C., Doll’ar, P., He, K., Girshick, R.B., Yuille, A.L., Xie, S.: Are labels necessary for neural architecture search? In: ECCV (2020)

    Google Scholar 

  20. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)

    Google Scholar 

  21. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: International Conference on Learning Representations (2018)

    Google Scholar 

  22. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: International Conference on Learning Representations (2019)

    Google Scholar 

  23. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7827–7838 (2018)

    Google Scholar 

  24. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV) September 2018

    Google Scholar 

  25. Nguyen, N., Chang, J.M.: Contrastive self-supervised neural architecture search. CoRR abs/2102.10557 (2021)

    Google Scholar 

  26. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: ECCV (2016)

    Google Scholar 

  27. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. ArXiv abs/1807.03748 (2018)

    Google Scholar 

  28. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4095–4104. PMLR 10–15 Jul 2018

    Google Scholar 

  29. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  30. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 4780–4789 (2019)

    Google Scholar 

  31. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016)

    Google Scholar 

  32. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  33. Shu, Y., Wang, W., Cai, S.: Understanding architectures learnt by cell-based neural architecture search. In: International Conference on Learning Representations (2020)

    Google Scholar 

  34. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) June 2016

    Google Scholar 

  36. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding (2020)

    Google Scholar 

  37. Wang, N., et al.: NAS-FCOS: Fast neural architecture search for object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) June 2020

    Google Scholar 

  38. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  39. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In: International Conference on Learning Representations (2019)

    Google Scholar 

  40. Xu, Y., et al.: Pc-darts: Partial channel connections for memory-efficient architecture search. In: International Conference on Learning Representations (2020)

    Google Scholar 

  41. Ying, C., Klein, A., Christiansen, E., Real, E., 0002, K.M., Hutter, F.: NAS-Bench-101: Towards Reproducible Neural Architecture Search. In: Proceedings of the 36th International Conference on Machine Learning, pp. 7105–7114. PMLR (2019)

    Google Scholar 

  42. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 645–654 (2017)

    Google Scholar 

  43. Zhang, X., Hou, P., Zhang, X., Sun, J.: Neural architecture search with random labels. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10902–10911 (2021)

    Google Scholar 

  44. Zhang, Y., Qiu, Z., Liu, J., Yao, T., Liu, D., Mei, T.: Customizable architecture search for semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11633–11642 (2019)

    Google Scholar 

  45. Zhou, H., Yang, M., Wang, J., Pan, W.: BayesNAS: A Bayesian Approach for Neural Architecture Search. In: Proceedings of the 36th International Conference on Machine Learning, pp. 7603–7613. PMLR (2019)

    Google Scholar 

  46. Zhuang, C., Zhai, A., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6001–6011 (2019)

    Google Scholar 

  47. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. (2017) ArXiv abs/1611.01578

    Google Scholar 

  48. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuowei Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 309 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z. et al. (2023). Towards Self-Supervised and Weight-preserving Neural Architecture Search. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics