Skip to main content

Racial Bias in the Beautyverse: Evaluation of Augmented-Reality Beauty Filters

  • 1982 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13803)


This short paper proposes a preliminary and yet insightful investigation of racial biases in beauty filters techniques currently used on social media. The obtained results are a call to action for researchers in Computer Vision: such biases risk being replicated and exaggerated in the Metaverse and, as a consequence, they deserve more attention from the community.


  • Self-representation
  • Racial bias
  • Ethics

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Abi-Jaoude, E., Naylor, K.T., Pignatiello, A.: Smartphones, social media use and youth mental health. Can. Med. Assoc. J. 192(6) (2020).

  2. Anderson, J., Rainie, L.: The metaverse in 2040. Pew Research Center (2022)

    Google Scholar 

  3. Bessière, K., Seay, A.F., Kiesler, S.: The ideal elf: identity exploration in world of Warcraft. Cyberpsychol. Behav. 10(4), 530–535 (2007)

    CrossRef  Google Scholar 

  4. Ducheneaut, N., Wen, M.H., Yee, N., Wadley, G.: Body and mind: a study of avatar personalization in three virtual worlds. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1151–1160 (2009)

    Google Scholar 

  5. Higgins, E.T.: Self-discrepancy: a theory relating self and affect. Psychol. Rev. 94(3), 319 (1987)

    CrossRef  Google Scholar 

  6. Jagota, V.: Why do all the snapchat filters try to make you look white? June 2016

    Google Scholar 

  7. Karkkainen, K., Joo, J.: FairFace: face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1548–1558, January 2021

    Google Scholar 

  8. Khunger, N., Pant, H.: Cosmetic procedures in adolescents: what’s safe and what can wait. Indian J. Paediatr. Dermatol. 22(1), 12–20 (2021).

    CrossRef  Google Scholar 

  9. Kolesnichenko, A., McVeigh-Schultz, J., Isbister, K.: Understanding emerging design practices for avatar systems in the commercial social VR ecology. In: Proceedings of the 2019 on Designing Interactive Systems Conference, pp. 241–252 (2019)

    Google Scholar 

  10. Lee, L.H., et al.: All one needs to know about metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv preprint arXiv:2110.05352 (2021)

  11. Li, S.: The problems with Instagram’s most popular beauty filters, from augmentation to eurocentrism, July 2020

    Google Scholar 

  12. Maloney, D.: Mitigating negative effects of immersive virtual avatars on racial bias. In: Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, CHI PLAY 2018 Extended Abstracts, pp. 39–43. Association for Computing Machinery, New York (2018).

  13. Manago, A.M., Graham, M.B., Greenfield, P.M., Salimkhan, G.: Self-presentation and gender on myspace. J. Appl. Dev. Psychol. 29(6), 446–458 (2008)

    CrossRef  Google Scholar 

  14. Messinger, P.R., Ge, X., Stroulia, E., Lyons, K., Smirnov, K., Bone, M.: On the relationship between my avatar and myself. J. Virtual Worlds Res. 1(2) (2008).

  15. Mulaudzi, S.: Let’s be honest: snapchat filters are a little racist, January 2017.

  16. Mummendey, H.D.: Psychologie der Selbstdarstellung (1990)

    Google Scholar 

  17. Neely, E.L.: No player is ideal: why video game designers cannot ethically ignore players’ real-world identities. ACM SIGCAS Comput. Soc. 47(3), 98–111 (2017)

    CrossRef  Google Scholar 

  18. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. British Machine Vision Association (2015)

    Google Scholar 

  19. Riccio, P., Psomas, B., Galati, F., Escolano, F., Hofmann, T., Oliver, N.M.: OpenFilter: a framework to democratize research access to social media AR filters. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022).

  20. Ryan-Mosley, T.: Beauty filters are changing the way young girls see themselves, April 2021.

  21. Ryan-Mosley, T.: How digital beauty filters perpetuate colorism, August 2021

    Google Scholar 

  22. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-CAM: why did you say that? arXiv preprint arXiv:1611.07450 (2016)

  23. Serengil, S.I., Ozpinar, A.: LightFace: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 23–27. IEEE (2020).

  24. Shein, E.: Filtering for beauty. Commun. ACM 64(11), 17–19 (2021)

    CrossRef  Google Scholar 

  25. Woodruff, A., Fox, S.E., Rousso-Schindler, S., Warshaw, J.: A qualitative exploration of perceptions of algorithmic fairness. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 1–14. Association for Computing Machinery, New York (2018).

Download references


P.R. and N.O. are supported by a nominal grant received at the ELLIS Unit Alicante Foundation from the Regional Government of Valencia in Spain (Convenio Singular signed with Generalitat Valenciana, Conselleria d’Innovació, Universitats, Ciència i Societat Digital, Dirección General para el Avance de la Sociedad Digital). P.R. is also supported by a grant by the Banc Sabadell Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Piera Riccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riccio, P., Oliver, N. (2023). Racial Bias in the Beautyverse: Evaluation of Augmented-Reality Beauty Filters. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)