Skip to main content

PVBM: A Python Vasculature Biomarker Toolbox Based on Retinal Blood Vessel Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Introduction: Blood vessels can be non-invasively visualized from a digital fundus image (DFI). Several studies have shown an association between cardiovascular risk and vascular features obtained from DFI. Recent advances in computer vision and image segmentation enable automatising DFI blood vessel segmentation. There is a need for a resource that can automatically compute digital vasculature biomarkers (VBM) from these segmented DFI. Methods: In this paper, we introduce a Python Vasculature BioMarker toolbox, denoted PVBM. A total of 11 VBMs were implemented. In particular, we introduce new algorithmic methods to estimate tortuosity and branching angles. Using PVBM, and as a proof of usability, we analyze geometric vascular differences between glaucomatous patients and healthy controls. Results: We built a fully automated vasculature biomarker toolbox based on DFI segmentations and provided a proof of usability to characterize the vascular changes in glaucoma. For arterioles and venules, all biomarkers were significant and lower in glaucoma patients compared to healthy controls except for tortuosity, venular singularity length and venular branching angles. Conclusion: We have automated the computation of 11 VBMs from retinal blood vessel segmentation. The PVBM toolbox is made open source under a GNU GPL 3 license and is available on physiozoo.com (following publication).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramovich, O., Pizem, H., Van Eijgen, J., Stalmans, I., Blumenthal, E., Behar, J.: FundusQ-Net: a regression quality assessment deep learning algorithm for fundus images quality grading. arXiv preprint arXiv:2205.01676 (2022)

  2. Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., Ortiz-De-Solorzano, C.: 3D reconstruction of histological sections: application to mammary gland tissue. Microsc. Res. Technol. 73(11), 1019–1029 (2010)

    Article  Google Scholar 

  3. Badawi, S.A., Fraz, M.M.: Multiloss function based deep convolutional neural network for segmentation of retinal vasculature into arterioles and venules. In: BioMed Research International 2019 (2019)

    Google Scholar 

  4. Betzler, B.K., et al.: Retinal vascular profile in predicting incident cardiometabolic diseases among individuals with diabetes. Microcirculation, p. e12772 (2022)

    Google Scholar 

  5. Brinchmann-Hansen, O., Heier, H.: Theoretical relations between light streak characteristics and optical properties of retinal vessels. Acta Ophthalmol. 64(S179), 33–37 (1986)

    Article  Google Scholar 

  6. Cheung, N., et al.: Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care 32(1), 106–110 (2009)

    Article  Google Scholar 

  7. Chhabra, A., Jensen, R.V.: Direct determination of the f (\(\alpha \)) singularity spectrum. Phys. Rev. Lett. 62(12), 1327 (1989)

    Article  MathSciNet  Google Scholar 

  8. Dashtbozorg, B., Mendonca, A.M., Penas, S., Campilho, A.: RetinaCAD, a system for the assessment of retinal vascular changes. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6328–6331. IEEE (2014)

    Google Scholar 

  9. Doubal, F.N., MacGillivray, T.J., Patton, N., Dhillon, B., Dennis, M.S., Wardlaw, J.M.: Fractal analysis of retinal vessels suggests that a distinct vasculopathy causes lacunar stroke. Neurology 74(14), 1102–1107 (2010)

    Article  Google Scholar 

  10. Doubal, F.N., et al.: Retinal arteriolar geometry is associated with cerebral white matter hyperintensities on magnetic resonance imaging. Int. J. Stroke 5(6), 434–439 (2010)

    Article  Google Scholar 

  11. Family, F., Masters, B.R., Platt, D.E.: Fractal pattern formation in human retinal vessels. Physica D 38(1–3), 98–103 (1989)

    Article  Google Scholar 

  12. Fhima, J., Van Eijgen, J., Freiman, M., Stalmans, I., Behar, J.A.: Lirot.ai: a novel platform for crowd-sourcing retinal image segmentations. In: Accepted for Proceeding in Computing in Cardiology 2022 (2022)

    Google Scholar 

  13. Goldenberg, D., Shahar, J., Loewenstein, A., Goldstein, M.: Diameters of retinal blood vessels in a healthy cohort as measured by spectral domain optical coherence tomography. Retina 33(9), 1888–1894 (2013)

    Article  Google Scholar 

  14. Grisan, E., Foracchia, M., Ruggeri, A.: A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 27(3), 310–319 (2008)

    Article  Google Scholar 

  15. Gunn, R.M.: Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal disease, and (2) of increased arterial tension. Trans. Ophthalmol. Soc. UK 12, 124–125 (1892)

    Google Scholar 

  16. Gunn, R.M.: Ophthalmoscopic evidence of general arterial disease. Trans. Ophthalmol. Soc. UK 18, 356–381 (1898)

    Google Scholar 

  17. Guo, S., Yin, S., Tse, G., Li, G., Su, L., Liu, T.: Association between caliber of retinal vessels and cardiovascular disease: a systematic review and meta-analysis. Curr. Atheroscler. Rep. 22(4), 1–13 (2020)

    Article  Google Scholar 

  18. Hanssen, H., et al.: Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 216(2), 433–439 (2011)

    Article  Google Scholar 

  19. Hart, W.E., Goldbaum, M., Côté, B., Kube, P., Nelson, M.R.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53(2), 239–252 (1999)

    Article  Google Scholar 

  20. Karperien, A.: Fraclac for imagej (2013)

    Google Scholar 

  21. Kaushik, S., Tan, A.G., Mitchell, P., Wang, J.J.: Prevalence and associations of enhanced retinal arteriolar light reflex: a new look at an old sign. Ophthalmology 114(1), 113–120 (2007)

    Article  Google Scholar 

  22. Kawasaki, R., Wang, J.J., Rochtchina, E., Lee, A.J., Wong, T.Y., Mitchell, P.: Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains eye study. Ophthalmology 120(1), 84–90 (2013)

    Article  Google Scholar 

  23. Keith, N.M.: Some different types of essential hypertension: their course and prognosis. Am. J. Med. Sci. 197, 332–343 (1939)

    Article  Google Scholar 

  24. Lemmens, S., et al.: Age-related changes in the fractal dimension of the retinal microvasculature, effects of cardiovascular risk factors and smoking behaviour. Acta Ophthalmologica (2021)

    Google Scholar 

  25. Liew, G., et al.: Fractal analysis of retinal microvasculature and coronary heart disease mortality. Eur. Heart J. 32(4), 422–429 (2011)

    Article  Google Scholar 

  26. Liew, G., Wang, J.J.: Retinal vascular signs: a window to the heart? Revista Española de Cardiología (English Edition) 64(6), 515–521 (2011)

    Article  Google Scholar 

  27. Liew, G., et al.: The retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115(11), 1951–1956 (2008)

    Article  Google Scholar 

  28. Lotmar, W., Freiburghaus, A., Bracher, D.: Measurement of vessel tortuosity on fundus photographs. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 211(1), 49–57 (1979)

    Article  Google Scholar 

  29. Macek, W.M., Wawrzaszek, A.: Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere. J. Geophys. Res. Space Phys. 114(A3) (2009)

    Google Scholar 

  30. Mainster, M.A.: The fractal properties of retinal vessels: embryological and clinical implications. Eye 4(1), 235–241 (1990)

    Article  Google Scholar 

  31. Mandelbrot, B.B., Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 1. WH Freeman, New York (1982)

    Google Scholar 

  32. Martínez-Pérez, M.E., et al.: Geometrical and morphological analysis of vascular branches from fundus retinal images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 756–765. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-40899-4_78

    Chapter  Google Scholar 

  33. Mehta, R., et al.: Phosphate, fibroblast growth factor 23 and retinopathy in chronic kidney disease: the chronic renal insufficiency cohort study. Nephrol. Dial. Transplant. 30(9), 1534–1541 (2015)

    Article  MathSciNet  Google Scholar 

  34. Miri, M., Amini, Z., Rabbani, H., Kafieh, R.: A comprehensive study of retinal vessel classification methods in fundus images. J. Med. Sig. Sens. 7(2), 59 (2017)

    Article  Google Scholar 

  35. Murphy, S.L., Kochanek, K.D., Xu, J., Arias, E.: Mortality in the United States, 2020 (2021)

    Google Scholar 

  36. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. ophthalmol. Vis. Sci. 50(5), 2004–2010 (2009)

    Article  Google Scholar 

  37. Parr, J.C., Spears, G.F.S.: General caliber of the retinal arteries expressed as the equivalent width of the central retinal artery. Am. J. Ophthalmol. 77(4), 472–477 (1974)

    Article  Google Scholar 

  38. Perez-Rovira, A., et al.: VAMPIRE: vessel assessment and measurement platform for images of the REtina. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3391–3394. IEEE (2011)

    Google Scholar 

  39. Posadas, A.N.D., Giménez, D., Bittelli, M., Vaz, C.M.P., Flury, M.: Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65(5), 1361–1367 (2001)

    Article  Google Scholar 

  40. Provost, E.B., Nawrot, T.S., Int Panis, L., Standaert, A., Saenen, N.D., De Boever, P.: Denser retinal microvascular network is inversely associated with behavioral outcomes and sustained attention in children. Front. Neurol. 12, 547033 (2021)

    Article  Google Scholar 

  41. Rasband, W.S.: ImageJ, US National Institutes of Health, Bethesda, Maryland, USA (2011)

    Google Scholar 

  42. Sabanayagam, C., et al.: Retinal microvascular caliber and chronic kidney disease in an Asian population. Am. J. Epidemiol. 169(5), 625–632 (2009)

    Article  Google Scholar 

  43. Scheie, H.G.: Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. A.M.A. Arch. Ophthalmol. 49(2), 117–138 (1953)

    Article  Google Scholar 

  44. Sharrett, A.R., et al.: Retinal arteriolar diameters and elevated blood pressure: the atherosclerosis risk in communities study. Am. J. Epidemiol. 150(3), 263–270 (1999)

    Article  Google Scholar 

  45. Sng, C.C.A., et al.: Fractal analysis of the retinal vasculature and chronic kidney disease. Nephrol. Dial. Transplant. 25(7), 2252–2258 (2010)

    Article  Google Scholar 

  46. Stosic, T., Stosic, B.D.: Multifractal analysis of human retinal vessels. IEEE Trans. Med. Imaging 25(8), 1101–1107 (2006)

    Article  MATH  Google Scholar 

  47. Ţălu, Ş: Characterization of retinal vessel networks in human retinal imagery using quantitative descriptors. Hum. Veterinary Med. 5(2), 52–57 (2013)

    Google Scholar 

  48. Ţălu, Ş, Stach, S., Călugăru, D.M., Lupaşcu, C.A., Nicoară, S.D.: Analysis of normal human retinal vascular network architecture using multifractal geometry. Int. J. Ophthalmol. 10(3), 434 (2017)

    Google Scholar 

  49. Van Craenendonck, T., et al.: Retinal microvascular complexity comparing mono-and multifractal dimensions in relation to cardiometabolic risk factors in a Middle Eastern population. Acta Ophthalmol. 99(3), e368–e377 (2021)

    Google Scholar 

  50. Witt, N., et al.: Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47(5), 975–981 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

The research was supported by Grant No ERANET - 2031470 from the Ministry of Health, by the Israel PBC-VATAT and by the Technion Center for Machine Learning and Intelligent Systems (MLIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Fhima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fhima, J., Eijgen, J.V., Stalmans, I., Men, Y., Freiman, M., Behar, J.A. (2023). PVBM: A Python Vasculature Biomarker Toolbox Based on Retinal Blood Vessel Segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics