Skip to main content

Residual Feature Distillation Channel Spatial Attention Network for ISP on Smartphone

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13802))

Included in the following conference series:

Abstract

With the increasing popularity of mobile photography, more and more attention is being paid to image signal processing(ISP) algorithms used to improve various perceptual aspects of mobile photos. For this, a learned smartphone ISP task was proposed to develop an end-to-end deep learning-based ISP pipeline that can replace classical hand-crafted ISP and imitate target RGB images captured by digital single-lens reflex camera(DSLR). However, hardware limitations of mobile phone make it essential and challenging to achieve an acceptable trade off between computational cost and performance. In this paper, a light-weighted and powerful network named residual feature distillation channel spatial attention network (RFDCSANet) is proposed for end-to-end learned smartphone ISP task. To be specific, we employ modified residual feature distillation block(RFDB) including channel spatial attention(CSA) mechanism to progressively refine distilled features and adaptively fuse channel and spatial features. Particularly, we utilize a re-parameterizable block, namely edge-oriented convolution block(ECB) as the basic module to improve performance without introducing any additional cost in the inference stage. The proposed solution ranked \(\boldsymbol{3^{rd}}\) in Mobile AI 2022 Learned Smartphone ISP Challenge (Track 1) with \(\boldsymbol{1^{st}}\) place PSNR score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268 (2018)

    Google Scholar 

  2. Anwar, S., Huynh, C.P., Porikli, F.: Identity enhanced residual image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 520–521 (2020)

    Google Scholar 

  3. Arora, S., Cohen, N., Hazan, E.: On the optimization of deep networks: implicit acceleration by overparameterization. In: International Conference on Machine Learning, pp. 244–253. PMLR (2018)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  5. Cao, J., et al.: DO-Conv: depthwise over-parameterized convolutional layer. IEEE Transactions on Image Processing (2022)

    Google Scholar 

  6. Chen, S., Chen, Y., Yan, S., Feng, J.: Efficient differentiable neural architecture search with meta kernels. arXiv preprint arXiv:1912.04749 (2019)

  7. Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_11

    Chapter  Google Scholar 

  8. Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1911–1920 (2019)

    Google Scholar 

  9. Ding, X., et al.: ResRep: lossless CNN pruning via decoupling remembering and forgetting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4510–4520 (2021)

    Google Scholar 

  10. Ding, X., Zhang, X., Han, J., Ding, G.: Diverse branch block: building a convolution as an inception-like unit. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10886–10895 (2021)

    Google Scholar 

  11. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style ConvNets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Guo, S., Alvarez, J.M., Salzmann, M.: ExpandNets: linear over-parameterization to train compact convolutional networks. Adv. Neural. Inf. Process. Syst. 33, 1298–1310 (2020)

    Google Scholar 

  14. Hirakawa, K., Parks, T.W.: Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans. Image Process. 14(3), 360–369 (2005)

    Article  Google Scholar 

  15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  16. Hsyu, M.C., Liu, C.W., Chen, C.H., Chen, C.W., Tsai, W.C.: CSAnet: high speed channel spatial attention network for mobile ISP. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2486–2493 (2021)

    Google Scholar 

  17. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  18. Ignatov, A., Chiang, C.M., Kuo, H.K., Sycheva, A., Timofte, R.: Learned smartphone ISP on mobile NPUs with deep learning, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2503–2514 (2021)

    Google Scholar 

  19. Ignatov, A., Patel, J., Timofte, R.: Rendering natural camera bokeh effect with deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 418–419 (2020)

    Google Scholar 

  20. Ignatov, A., et al.: AIM 2019 challenge on RAW to RGB mapping: methods and results. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3584–3590. IEEE (2019)

    Google Scholar 

  21. Ignatov, A., et al.: AI benchmark: all about deep learning on smartphones in 2019. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3617–3635. IEEE (2019)

    Google Scholar 

  22. Ignatov, A., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 152–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_9

    Chapter  Google Scholar 

  23. Ignatov, A., et al.: Learned smartphone ISP on mobile GPUs with deep learning, mobile AI & AIM 2022 challenge: report. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  24. Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 536–537 (2020)

    Google Scholar 

  25. Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204–3213 (2018)

    Google Scholar 

  26. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 41–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_2

    Chapter  Google Scholar 

  27. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_12

    Chapter  Google Scholar 

  28. Park, B., Yu, S., Jeong, J.: Densely connected hierarchical network for image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  29. Ramanath, R., Snyder, W.E., Yoo, Y., Drew, M.S.: Color image processing pipeline. IEEE Signal Process. Mag. 22(1), 34–43 (2005)

    Article  Google Scholar 

  30. Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recogn. Lett. 24(11), 1663–1677 (2003)

    Article  Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Silva, J.I.S., et al.: A deep learning approach to mobile camera image signal processing. In: Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images, pp. 225–231. SBC (2020)

    Google Scholar 

  33. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  34. Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007)

    Article  MathSciNet  Google Scholar 

  35. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  36. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  37. Zhang, K., et al.: AIM 2020 challenge on efficient super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 5–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_1

    Chapter  Google Scholar 

  38. Zhang, M., Yu, X., Rong, J., Ou, L., Gao, F.: RepNAS: searching for efficient re-parameterizing blocks. arXiv preprint arXiv:2109.03508 (2021)

  39. Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time super resolution on mobile devices. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4034–4043 (2021)

    Google Scholar 

  40. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  41. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, J., Fan, Z., Wu, X., Wu, Y., Zhang, F. (2023). Residual Feature Distillation Channel Spatial Attention Network for ISP on Smartphone. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25063-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25062-0

  • Online ISBN: 978-3-031-25063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics