Skip to main content

Joint Prediction of Amodal and Visible Semantic Segmentation for Automated Driving

  • 1118 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13801)

Abstract

Amodal perception is the ability to hallucinate full shapes of (partially) occluded objects. While natural to humans, learning-based perception methods often only focus on the visible parts of scenes. This constraint is critical for safe automated driving since detection capabilities of perception methods are limited when faced with (partial) occlusions. Moreover, corner cases can emerge from occlusions while the perception method is oblivious. In this work, we investigate the possibilities of joint prediction of amodal and visible semantic segmentation masks. More precisely, we investigate whether both perception tasks benefit from a joint training approach. We report our findings on both the Cityscapes and the Amodal Cityscapes dataset. The proposed joint training outperforms the separately trained networks in terms of mean intersection over union in amodal areas of the masks by \(6.84\%\) absolute, while even slightly improving the visible segmentation performance.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bär, A., Klingner, M., Varghese, S., Hüger, F., Schlicht, P., Fingscheidt, T.: Robust semantic segmentation by redundant networks with a layer-specific loss contribution and majority vote. In: Proceedings of CVPR - Workshops, Seattle, WA, USA, pp. 1348–1358 (2020)

    Google Scholar 

  2. Bogdoll, D., Nitsche, M., Zöllner, J.M.: Anomaly detection in autonomous driving: a survey. In: Proceedings of CVPR - Workshops, New Orleans, LA, USA, pp. 4488–4499 (2022)

    Google Scholar 

  3. Bolte, J.A., et al.: Unsupervised domain adaptation to improve image segmentation quality both in the source and target domain. In: Proceedings of CVPR - Workshops, Long Beach, CA, USA, pp. 1404–1413 (2019)

    Google Scholar 

  4. Breitenstein, J., Fingscheidt, T.: Amodal cityscapes: a new dataset, its generation, and an amodal semantic segmentation challenge baseline. In: Proceedings of IV, Aachen, Germany, pp. 1–8 (2022)

    Google Scholar 

  5. Breitenstein, J., Termöhlen, J.A., Lipinski, D., Fingscheidt, T.: Systematization of Corner Cases for Visual Perception in Automated Driving. In: Proc. of IV. pp. 986–993. Las Vegas, NV, USA (Oct 2020)

    Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of CVPR, Las Vegas, NV, USA, pp. 3213–3223 (2016)

    Google Scholar 

  7. Follmann, P., König, R., Härtinger, P., Klostermann, M.: Learning to see the invisible: end-to-end trainable amodal instance segmentation. In: Proceedings of WACV, Waikoloa Village, HI, USA, pp. 1328–1336 (2019)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of ICCV, Venice, Italy, pp. 2980–2988 (2017)

    Google Scholar 

  9. Heidecker, F., et al.: An application-driven conceptualization of corner cases for perception in highly automated driving. In: Proceedings of IV, Nagoya, Japan, pp. 644–651 (2021)

    Google Scholar 

  10. Hu, Y.T., Chen, H.S., Hui, K., Huang, J.B., Schwing, A.G.: SAIL-VOS: semantic amodal instance level video object segmentation - a synthetic dataset and baselines. In: Proceedings of CVPR, Long Beach, CA, USA, pp. 3105–3115 (2019)

    Google Scholar 

  11. Ke, L., Tai, Y.W., Tang, C.K.: Deep occlusion-aware instance segmentation with overlapping BiLayers. In: Proceedings of CVPR, Nashville, TN, USA, pp. 4019–4028 (2021)

    Google Scholar 

  12. Klingner, M., Bär, A., Fingscheidt, T.: Improved noise and attack robustness for semantic segmentation by using multi-task training with self-supervised depth estimation. In: Proceedings of CVPR - Workshops, Seattle, WA, USA, pp. 1299–1309 (2020)

    Google Scholar 

  13. Mohan, R., Valada, A.: Amodal panoptic segmentation. In: Proceedings of CVPR, New Orleans, LA, USA, pp. 21023–21032 (2022)

    Google Scholar 

  14. Poudel, R.P., Liwicki, S., Cipolla, R.: Fast-SCNN: Fast Semantic Segmentation Network. arXiv preprint arXiv:1902.04502, pp. 1–9 (2019)

  15. Purkait, P., Zach, C., Reid, I.D.: Seeing behind things: extending semantic segmentation to occluded regions. In: Proceedings of IROS, Macau, SAR, China, pp. 1998–2005 (2019)

    Google Scholar 

  16. Qi, L., Jiang, L., Liu, S., Shen, X., Jia, J.: Amodal instance segmentation with KINS dataset. In: Proceedings of CVPR, Long Beach, CA, USA, pp. 3014–3023 (2019)

    Google Scholar 

  17. Reddy, N.D., Tamburo, R., Narasimhan, S.: WALT: Watch and learn 2D amodal representation using time-lapse imagery. In: Proceedings of CVPR, New Orleans, LA, USA, pp. 9356–9366 (2022)

    Google Scholar 

  18. Rensink, R.A., Enns, J.T.: Early completion of occluded objects. Vision Res. 38(15), 2489–2505 (1998)

    CrossRef  Google Scholar 

  19. Romera, E., Álvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. (T-ITS) 19(1), 263–272 (2018)

    Google Scholar 

  20. Sun, Y., Kortylewski, A., Yuille, A.: Amodal segmentation through out-of-task and out-of-distribution generalization with a Bayesian model. In: Proceedings of CVPR, New Orleans, LA, USA, pp. 1215–1224 (2022)

    Google Scholar 

  21. Wang, A., Sun, Y., Kortylewski, A., Yuille, A.: Robust object detection under occlusion with context-aware CompositionalNets. In: Proceedings of CVPR, Seattle, WA, USA, pp. 12645–12654 (2020)

    Google Scholar 

  22. Weigelt, S., Singer, W., Muckli, L.: Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation. BMC Neurosci. 8(1), 1–11 (2007)

    CrossRef  Google Scholar 

  23. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    CrossRef  Google Scholar 

  24. Zhu, Y., Tian, Y., Metaxas, D., Dollár, P.: Semantic amodal segmentation. In: Proceedings of CVPR, Honolulu, HI, USA, pp. 1464–1472 (2017)

    Google Scholar 

Download references

Acknowledgements

We mourn the loss of our co-author, colleague and friend Jonas Löhdefink. Without his valuable input this work would not have been possible. The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Energy within the project “KI Data Tooling - Methods and tools for the generation and refinement of training, validation and safeguarding data for AI functions in autonomous vehicles.” The authors would like to thank the consortium for the successful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Breitenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breitenstein, J., Löhdefink, J., Fingscheidt, T. (2023). Joint Prediction of Amodal and Visible Semantic Segmentation for Automated Driving. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)