Skip to main content

HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information

  • 334 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13823)

Abstract

Learning disentangled representations requires either supervision or the introduction of specific model designs and learning constraints as biases. InfoGAN is a popular disentanglement framework that learns unsupervised disentangled representations by maximising the mutual information between latent representations and their corresponding generated images. Maximisation of mutual information is achieved by introducing an auxiliary network and training with a latent regression loss. In this short exploratory paper, we study the use of the Hilbert-Schmidt Independence Criterion (HSIC) to approximate mutual information between latent representation and image, termed HSIC-InfoGAN. Directly optimising the HSIC loss avoids the need for an additional auxiliary network. We qualitatively compare the level of disentanglement in each model, suggest a strategy to tune the hyperparameters of HSIC-InfoGAN, and discuss the potential of HSIC-InfoGAN for medical applications.

Keywords

  • Disentangled representation learning
  • HSIC
  • InfoGAN

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning, pp. 531–540. PMLR (2018)

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    CrossRef  Google Scholar 

  3. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. Adv. Neural. Inf. Process. Syst. 33, 12546–12558 (2020)

    Google Scholar 

  4. Chartsias, A., Joyce, T., et al.: Disentangled representation learning in cardiac image analysis. Media 58, 101535 (2019)

    Google Scholar 

  5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience (2006)

    Google Scholar 

  7. Du, Y., Li, S., Sharma, Y., Tenenbaum, J., Mordatch, I.: Unsupervised learning of compositional energy concepts. Adv. Neural. Inf. Process. Syst. 34, 15608–15620 (2021)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  9. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision, pp. 172–189 (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (2013)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    CrossRef  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  14. Liu, X., Sanchez, P., Thermos, S., O’Neil, A.Q., Tsaftaris, S.A.: Learning disentangled representations in the imaging domain. Med. Image Anal. 102516 (2022)

    Google Scholar 

  15. Liu, X., Thermos, S., Chartsias, A., O’Neil, A., Tsaftaris, S.A.: Disentangled representations for domain-generalized cardiac segmentation. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 187–195. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_19

    CrossRef  Google Scholar 

  16. Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A.: Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_29

    CrossRef  Google Scholar 

  17. Liu, X., Thermos, S., Valvano, G., Chartsias, A., O’Neil, A., Tsaftaris, S.A.: Metrics for exposing the biases of content-style disentanglement. In: British Machine Vision Conference (2021)

    Google Scholar 

  18. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: ICML, pp. 4114–4124. PMLR (2019)

    Google Scholar 

  19. Ma, W.D.K., Lewis, J., Kleijn, W.B.: The HSIC bottleneck: deep learning without back-propagation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5085–5092 (2020)

    Google Scholar 

  20. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning, pp. 2642–2651. PMLR (2017)

    Google Scholar 

  21. Papamakarios, G., Nalisnick, E.T., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22(57), 1–64 (2021)

    MATH  Google Scholar 

  22. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Sanchez, P., Tsaftaris, S.A.: Diffusion causal models for counterfactual estimation. In: First Conference on Causal Learning and Reasoning (2021)

    Google Scholar 

  24. Thermos, S., Liu, X., O’Neil, A., Tsaftaris, S.A.: Controllable cardiac synthesis via disentangled anatomy arithmetic. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 160–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_15

    CrossRef  Google Scholar 

  25. Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29

    CrossRef  Google Scholar 

  26. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the University of Edinburgh, the Royal Academy of Engineering and Canon Medical Research Europe by a PhD studentship to Xiao Liu. This work was partially supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1. S.A. Tsaftaris acknowledges the support of Canon Medical and the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme (grant RCSRF1819\(\backslash 8\backslash 25\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Thermos, S., Sanchez, P., O’Neil, A.Q., Tsaftaris, S.A. (2023). HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information. In: Fragemann, J., Li, J., Liu, X., Tsaftaris, S.A., Egger, J., Kleesiek, J. (eds) Medical Applications with Disentanglements. MAD 2022. Lecture Notes in Computer Science, vol 13823. Springer, Cham. https://doi.org/10.1007/978-3-031-25046-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25046-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25045-3

  • Online ISBN: 978-3-031-25046-0

  • eBook Packages: Computer ScienceComputer Science (R0)