Skip to main content

Abrasion Thermo-transference Fabric Vinyl Resistance and Its Application in Haptics Perception Stimuli

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2022)

Abstract

In this research a comparative analysis is performed to determine thermo-transference vinyl finish abrasion resistance in select texture under the ISO 12947–2: 2016 Abrasion resistance test with upper limit 100000 cycles. The comparative analysis studies 2 types of fabric performance: Knitting fabric: (i) White Jersey (ii) Red fleece (iii) White Pique and Flat knit: (iv) Pink knit, (v) White print knit, (vi) 4 types Gabardine fabric: (a) 90-microne Fine vinyl (b)110 -micron Average vinyl, (c) 325-micron Glitter vinyl (d) 600-microne Embossed vinyl considering time, temperature, pressure and transfer method applying the Midi Martindale equipment. Additionally, the study of embossed textile products stimulates the sense of touch in individuals with a light degree of visual impairment or completely visually impaired. This information is based on an analog test –Snellen methodology to measure visual acuity adapted to smooth surfaces like embossment or shine, micron finesse and three detail complexity levels in characters: basic figures, alphanumeric and complex designed with Adobe Illustrator Cs6. Since used vinyl is thermoplastic together with substrate allows for user sensory perception magnification through finger tips nerve endings emitting electrical impulses to the brain turning into information giving rise to haptics perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, X., et al.: Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 85, 106000 (2021). https://doi.org/10.1016/j.nanoen.2021.106000

  2. Preißler, L., Jovanovic, B., Munzert, J., Schmidt, F., Fleming, R.W., Schwarzer, G.: Effects of visual and visual-haptic perception of material rigidity on reaching and grasping in the course of development. Acta Psychol. (Amst). 221 (2021). https://doi.org/10.1016/j.actpsy.2021.103457

  3. Yang, Y., Li, M., Fu, S.: Screen-printed photochromic textiles with high fastness prepared by self-adhesive polymer latex particles, vol.  158 (2021)

    Google Scholar 

  4. Liu, M., Zhang, C., Liu, F.: Understanding wax screen-printing: A novel patterning process for microfluidic cloth-based analytical devices. Anal. Chim. Acta. 891, 234–246 (2015). https://doi.org/10.1016/J.ACA.2015.06.034

  5. Cao, M., Liu, Z., Xie, C.: Effectiveness of calcium carbonate whiskers in mortar for improving the abrasion resistance. Constr. Build. Mater. 295, 123583 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123583

  6. Zhao, H., et al.: Robust sandwich micro-structure coating layer for wear-resistant conductive polyester fabrics. Appl. Surf. Sci. 494, 969–976 (2019). https://doi.org/10.1016/j.apsusc.2019.07.103

  7. Baumgartner, E., Wiebel, C.B., Gegenfurtner, K.R.: A comparison of haptic material perception in blind and sighted individuals. Vision Res. 115, 238–245 (2015). https://doi.org/10.1016/j.visres.2015.02.006

  8. Gonzalez, J.S., Maiolo, A.S., Hoppe, C.E., Alvarez, V.A.: Composite Gels Based on Poly (Vinyl alcohol) for Biomedical Uses. Procedia Mater. Sci. 1, 483–490 (2012). https://doi.org/10.1016/j.mspro.2012.06.065

  9. Braga, L.R., Pérez, L.M., Soazo, M. del V., Machado, F.: Evaluation of the antimicrobial, antioxidant and physicochemical properties of Poly(Vinyl chloride) films containing quercetin and silver nanoparticles. Lwt. 101, 491–498 (2019). https://doi.org/10.1016/j.lwt.2018.11.082

  10. van Rijswijk, K., Bersee, H.E.N.: Reactive processing of textile fiber-reinforced thermoplastic composites – An overview. Compos. Part A Appl. Sci. Manuf. 38, 666–681 (2007). https://doi.org/10.1016/J.COMPOSITESA.2006.05.007

  11. Wadatkar, N.S., Waghuley, S.A.: Characterizing the electro-optical properties of polyaniline/poly(vinyl acetate) composite films as-synthesized through chemical route. Res. Surf. Interf. 4, 100016 (2021)

    Google Scholar 

  12. Mudzi, P., Wu, R., Firouzi, D., Ching, C.Y., Farncombe, T.H., Ravi Selvaganapathy, P.: Use of patterned thermoplastic hot film to create flexible ballistic composite laminates from UHMWPE fabric. Mater. Des. 214, 110403 (2022). https://doi.org/10.1016/j.matdes.2022.110403

    Article  Google Scholar 

  13. Du, Y., Xu, J., Paul, B., Eklund, P.: Flexible thermoelectric materials and devices (2018). https://doi.org/10.1016/j.apmt.2018.07.004

    Article  Google Scholar 

  14. Kane, F.: Nonwovens in smart clothes and wearable technologies. Smart Clothes Wearable Technol. 156–182 (2009). https://doi.org/10.1533/9781845695668.2.156

  15. Hilary, L.N., Sultana, S., Islam, Z., Sarker, M.K.U., Abedin, M.J., Haque, M.M.: Recycling of waste poly(vinyl chloride) fill materials to produce new polymer composites with propylene glycol plasticizer and waste sawdust of Albizia lebbeck wood. Curr. Res. Green Sustain. Chem. 4, (2021). https://doi.org/10.1016/j.crgsc.2021.100221

  16. Li, W., Ye, X., Wang, Z., Zhang, J., Chao, J.: The preparation and performance characteristics of polyvinyl chloride-co-vinyl acetate modified membranes. In: Energy Procedia. pp. 1158–1162. Elsevier Ltd. (2011). https://doi.org/10.1016/j.egypro.2011.03.203

  17. Wortmann, M., Frese, N., Hes, L., Gölzhäuser, A., Moritzer, E., Ehrmann, A.: Improved abrasion resistance of textile fabrics due to polymer coatings. J. Ind. Text. 49, 572–583 (2019). https://doi.org/10.1177/1528083718792655

    Article  Google Scholar 

  18. Thumsorn, S., Srisawat, N.: Influence of ethylene vinyl acetate contents on properties and crease recovery of slit yarn from polypropylene/high density polyethylene blend. Energy Procedia. 56, 334–341 (2014). https://doi.org/10.1016/j.egypro.2014.07.165

    Article  Google Scholar 

  19. Jokisch, S., Scheibel, T.: Spider silk foam coating of fabric. Pure Appl. Chem. 89, 1769–1776 (2017). https://doi.org/10.1515/PAC-2017-0601

    Article  Google Scholar 

  20. Ramujee, K., Potharaju, M.: Abrasion Resistance of Geopolymer Composites. Procedia Mater. Sci. 6, 1961–1966 (2014). https://doi.org/10.1016/j.mspro.2014.07.230

    Article  Google Scholar 

  21. Strength, T., Yuksel, I.: Blast-furnace slag Advanced testing of silk fibers , yarns , and fabrics (2018)

    Google Scholar 

  22. Fiber, T., Sinclair, R.: Understanding Textile Fibres and Their Properties Adding Functionality to Garments textiles and clothing (2020)

    Google Scholar 

  23. Zhang, W., Wei, L., Ma, J.: The antibacterial property and abrasion resistence of polyacrylate/graphene composites in finished leather. In: Proceedings of 34th IULTCS Congr. Sci. Technology Sustain. Leather, pp. 108–115 (2017)

    Google Scholar 

  24. Jasińska, I.: The algorithms of image processing and analysis in the textile fabrics abrasion assessment. Appl. Sci. 9 (2019). https://doi.org/10.3390/APP9183791

  25. ISO: ISO 12947–2:2016(en), Textiles — Determination of the abrasion resistance of fabrics by the Martindale method — Part 2: Determination of specimen breakdown, https://www.iso.org/obp/ui/#iso:std:iso:12947:-2:ed-2:v1:en, (Accessed06 Apr 2022)

  26. Liu, Y., Yuan, Y., Liu, J., Hua, J.: High wear-resisting, superhydrophobic coating with well aging resistance and ultrahigh corrosion resistant on high vinyl polybutadiene rubber substrate by thiol-ene click chemistry. Polym. Test. 101, 107312 (2021). https://doi.org/10.1016/j.polymertesting.2021.107312

    Article  Google Scholar 

  27. Coldea, A.M., Vlad, D.: Research Regarding the Physical-Mechanical Properties of Knits for Garments - Abrasion Resistance. Procedia Eng. 181, 330–337 (2017). https://doi.org/10.1016/j.proeng.2017.02.397

    Article  Google Scholar 

  28. Valencia, D.E.: Resolución de localización espacial háptica mediante estimulación eléctrica en la yema de los dedos Resolution of spatial localization haptic. 29, 18–26 (2021)

    Google Scholar 

  29. Rodríguez-Guerrero, C., Fraile, J.C., Pérez-Turiel, J., Rivera Farina, P.: Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores. Rev. Iberoam. Automática e Informática Ind. RIAI. 8, 63–70 (2011). https://doi.org/10.1016/s1697-7912(11)70027-9

  30. Bartocci, M.: Moderately and late preterms have problem recognizing faces after birth. J. Pediatr. Versão em Port. 93, 4–5 (2017). https://doi.org/10.1016/j.jpedp.2016.10.003

  31. Basset, N.: Estudios y rehabilitación de los trastornos de la sensibilidad de la mano. EMC - Kinesiterapia - Med. Física. 42, 1–13 (2021). https://doi.org/10.1016/S1293-2965(21)45680-X

    Article  Google Scholar 

  32. Ibáñez-Hernández, M.Á., Mora-González, F., Acosta-González, R., Alvarado-Castillo, B., Casillas-Chavarín, N.L.: Implante de lente intraocular trifocal difractivo: análisis y resultado de la agudeza visual. Rev. Mex. Oftalmol. 91, 235–240 (2017). https://doi.org/10.1016/J.MEXOFT.2016.06.010

    Article  Google Scholar 

  33. Ballesteros Jiménez, S.: Percepción haptica de objetos y patrones realzados: una revisión (1993)

    Google Scholar 

  34. Leclere, N.X., Sarlegna, F.R., Coello, Y., Bourdin, C.: Gradual exposure to Coriolis force induces sensorimotor adaptation with no change in peripersonal space. Sci. Rep. 12, 1–13 (2022). https://doi.org/10.1038/s41598-022-04961-1

    Article  Google Scholar 

  35. Dezcallar Sáez, T.: Relación entre procesos mentales y sentido háptico: Emociones y recuerdos mediante el análisis empírico de texturas. TDX (Tesis Dr. en Xarxa). 322 (2012)

    Google Scholar 

  36. ISO 12947–2:2016(E) ii COPYRIGHT PROTECTED DOCUMENT (2016)

    Google Scholar 

Download references

Acknowledgements

Special thanks to Universidad Técnica del Norte library, to the Department of University Wellness for the information received regarding the number of visually impaired students. Also, to the group of students from several majors who helped in the data-gathering process and support of the experimental process and, especially to professor- technicians in charge of the physical and chemical processes in the Textile College Degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Umaquinga-Criollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Godoy-Collaguazo, O.V., Umaquinga-Criollo, A., Naranjo-Toro, M., Flores, R.M., Chulde, K. (2023). Abrasion Thermo-transference Fabric Vinyl Resistance and Its Application in Haptics Perception Stimuli. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1757. Springer, Cham. https://doi.org/10.1007/978-3-031-24978-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24978-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24977-8

  • Online ISBN: 978-3-031-24978-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics