Skip to main content

Bamboo Cellulose Textile Filament “Angustifolia” Floating Root Resin

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2022)

Abstract

The purpose of the research was to manufacture bamboo cellulose textile filament “Angustifolia” (BCTF) incorporating anionic resin (IR), and to determine its performance in its properties of recovery to doubling (RTD), elongation (E), resistance (R), to be applied in hydroponic floating root crops. The applied process was developed by extruding and forming textile filament with bamboo cellulose (BC) and resin (AR). The BC was placed in a glass container and combined with AR in a 1:10 ratio respectively by stirring with a rod until a homogeneous solution was obtained. Then, the solution of BC and AR is placed at the end of a manual extruder (EM) polyester syringe (PET) of 1 cm in diameter, 12 cm in length and capacity for 10mL, it is manually compressed while at the other end there is an orifice of 1mm in diameter through which the solution is extruded producing BCTF, then it is dried in the environment for 30 min at a temperature of 29.2 ℃ and relative humidity (RH) 42%. The data provided has a reliability of 95% (p > 0.05) using past 4 statistical software. Concluding that it has a great RTD capacity with a statistical average (139.28°) (CV = 3.22), while the E has a statistical average of stretching (18. 38 mm), (25.15%) in relation to its length (CV = 50.97), opposite case occurs with resistance (N) (1.58 N) (CV = 29.02) decreases N in relation to its titer (T) (g/m) where BCTF samples acquire good flexibility and stretching capacities when mixed with AR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adu, C., et al.: Continuous and sustainable cellulose filaments from ionic liquid dissolved paper sludge nanofibres. J. Clean. Prod. 280 (2021). https://doi.org/10.1016/j.jclepro.2020.124503

  2. Ali, M., et al.: An investigation into the antibacterial properties of bamboo/cotton blended fabric and potential limitations of the test method AATCC 147. J. Nat. Fibers. 18(1), 51–58 (2021). https://doi.org/10.1080/15440478.2019.1612305

    Article  Google Scholar 

  3. Bar-Shai, N., et al.: Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering. Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-90903-2

    Article  Google Scholar 

  4. Butler, T., et al.: Molecular weight effects on the processing, thermal, and mechanical properties of oligomeric bisphenol a phthalonitrile resins. In: Anderson, A.K., et al. (eds.) International SAMPE Technical Conference. Soc. for the Advancement of Material and Process Engineering (2019). https://doi.org/10.33599/nasampe/s.19.1471

  5. Elemike, E.E., Onwudiwe, D., Ivwurie, W.: Structural and thermal characterization of cellulose and copper oxide modified cellulose obtained from bamboo plant fibre. SN Applied Sciences 2(10), 1–8 (2020). https://doi.org/10.1007/s42452-020-03503-6

    Article  Google Scholar 

  6. Genoyer, J., et al.: Effect of the addition of cellulose filaments on the relaxation behavior of thermoplastics. J. Rheol. (N. Y. N. Y). 65(5), 779–789 (2021). https://doi.org/10.1122/8.0000228

  7. Hao, X., et al.: The effect of oil heat treatment on biological, mechanical and physical properties of bamboo. J. Wood Sci. 67(1), 1–14 (2021). https://doi.org/10.1186/s10086-021-01959-7

    Article  Google Scholar 

  8. Lara-Izaguirre, A.Y., et al.: Growth and NO3- accumulation in hydroponic lettuce with nitrate/ammonium ratios in two cultivation seasons. Rev. Fitotec. Mex. 42(1), 21–30 (2019). https://doi.org/10.35196/RFM.2019.1.21-29

  9. Lazo, R.P., Gonzabay, J.Q.: Economic analysis of hydroponic lettuce under floating root system in semi-arid climate. Granja. 31(1), 121–133 (2020). https://doi.org/10.17163/LGR.N31.2020.09

  10. Lee, S.Y., et al.: Thermo-mechanical properties of 3D printed photocurable shape memory resin for clear aligners. Sci. Rep. 12, 1 (2022). https://doi.org/10.1038/s41598-022-09831-4

    Article  Google Scholar 

  11. Lin, C., et al.: Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice. J. Exp. Bot. 72(5), 1879–1890 (2021). https://doi.org/10.1093/jxb/eraa542

    Article  Google Scholar 

  12. Lin, Q., et al.: Effects of extraction methods on morphology, structure and properties of bamboo cellulose. Ind. Crops Prod. 169 (2021). https://doi.org/10.1016/j.indcrop.2021.113640

  13. Mi, X., et al.: Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry. Waste Manag. 115, 65–73 (2020). https://doi.org/10.1016/j.wasman.2020.07.022

    Article  Google Scholar 

  14. Peng, K., et al.: Flame-retardant treatment of Lyocell fibers and effects on various fiber properties. Fire Mater. 46(2), 487–495 (2022). https://doi.org/10.1002/fam.2993

    Article  Google Scholar 

  15. Rao, F., et al.: Influence of resin molecular weight on bonding interface, water resistance, and mechanical properties of bamboo scrimber composite. Constr. Build. Mater. 292 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123458

  16. Rim, C., et al.: Optimization of the pre-application process of a reactive resin before direct dyeing for imparting reserve effects on Elastane/cotton pant garments. Alexandria Eng. J. 61(12), 9365–9376 (2022). https://doi.org/10.1016/j.aej.2022.02.048

    Article  Google Scholar 

  17. Sayyed, A.J., et al.: Cellulose-based nanomaterials for water and wastewater treatments: a review. J. Environ. Chem. Eng. 9, 6 (2021). https://doi.org/10.1016/j.jece.2021.106626

    Article  Google Scholar 

  18. Seki, M., Yashima, Y., Miki, T., Kiryu, T., Tanaka, S., Kanayama, K.: Effects of resin content and precompression treatment on bulk bamboo extrusion. Int.J. Mater. Form. 13(3), 331–339 (2019). https://doi.org/10.1007/s12289-019-01497-0

    Article  Google Scholar 

  19. Singh, M.K., Behera, B.K.: Effect of fibre cross-sectional shape on bending behaviour of yarns and fabrics; part I. J. Text. Inst. 113(5), 810–823 (2025). https://doi.org/10.1080/00405000.2021.1906488

    Article  Google Scholar 

  20. Ungerer, B., et al.: Chemical and physical interactions of regenerated cellulose yarns and isocyanate-based matrix systems. Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-91115-4

    Article  Google Scholar 

  21. Vallejo, M., et al.: Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava. Bioresour. Bioprocess. 8(1), 1–12 (2021). https://doi.org/10.1186/s40643-021-00377-3

    Article  Google Scholar 

  22. Vocht, M.P., et al.: High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids. Cellulose 28(5), 3055–3067 (2021). https://doi.org/10.1007/s10570-021-03697-x

    Article  Google Scholar 

  23. Wan, C., et al.: Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem. Eng. J. 359, 459–475 (2019). https://doi.org/10.1016/j.cej.2018.11.115

  24. Xue, Y., et al.: High-strength regenerated cellulose fiber reinforced with cellulose nanofibril and nanosilica. Nanomaterials 11, 10 (2021). https://doi.org/10.3390/nano11102664

    Article  Google Scholar 

  25. Yao, W., et al.: Fabrication and properties of polypylene matrix composites reinforced by ultrafine bamboo-char. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 34(12), 2661–2667 (2017). https://doi.org/10.13801/j.cnki.fhclxb.20170314.004

  26. Zeng, J., et al.: Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-91420-y

    Article  Google Scholar 

  27. Zhao, N.-D., et al.: Fabrication of cellulose@Mg(OH)2 composite filter via interfacial bonding and its trapping effect for heavy metal ions. Chem. Eng. J. 426 (2021). https://doi.org/10.1016/j.cej.2021.130812

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willam Ricardo Esparza Encalada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esparza Encalada, W.R., Herrera Villarreal, W.A., Chamorro Ortega, L.A. (2023). Bamboo Cellulose Textile Filament “Angustifolia” Floating Root Resin. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1756. Springer, Cham. https://doi.org/10.1007/978-3-031-24971-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24971-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24970-9

  • Online ISBN: 978-3-031-24971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics