Skip to main content

Filling MIS Vertices of a Graph by Myopic Luminous Robots

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2023)

Abstract

We present the problem of finding a maximal independent set (MIS) (named as MIS Filling problem) of an arbitrary connected graph with luminous myopic mobile robots. The robots enter the graph one after another from a particular vertex called the Door and move along the edges of the graph without collision to occupy vertices such that the set of occupied vertices forms a maximal independent set.

This paper explores two versions of the MIS filling problem. For the MIS Filling with Single Door case, our IND algorithm forms an MIS of size m in \(O(m^2)\) epochs under an asynchronous scheduler, where an epoch is the smallest time interval in which each participating robot gets activated and executes the algorithm at least once. The robots have three hops of visibility range, \(\varDelta + 8\) number of colors, and \(O(\log \varDelta )\) bits of persistent storage, where \(\varDelta \) is the maximum degree of the graph. For the MIS Filling with Multiple Doors case, our MULTIND algorithm forms an MIS in \(O(m^2)\) epochs under a semi-synchronous scheduler using robots with five hops of visibility range, \(\varDelta + k + 7\) number of colors, and \(O(\log (\varDelta + k))\) bits of persistent storage, where k is the number of doors.

P.S.Mandal—Partially supported by SERB, Govt. of India, Grant Number: MTR/2019/001528

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Augustine, J., Moses Jr, W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, pp. 1–10 (2018)

    Google Scholar 

  3. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sensors in unknown orthogonal environments. In: Fekete, S.P. (ed.) Algorithmic Aspects of Wireless Sensor Networks, pp. 125–140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92862-1_11

    Chapter  Google Scholar 

  4. Barrameda, E.M., Das, S., Santoro, N.: Uniform dispersal of asynchronous finite-state mobile robots in presence of holes. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 228–243. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_17

    Chapter  Google Scholar 

  5. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Arbitrary pattern formation by asynchronous opaque robots with lights. Theor. Comput. Sci. 849, 138–158 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. d’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. 610, 158–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Défago, X., Potop-Butucaru, M., Raipin-Parvédy, P.: Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distrib. Comput. 33(5), 393–421 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hideg, A., Lukovszki, T.: Uniform dispersal of robots with minimum visibility range. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 155–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_12

    Chapter  Google Scholar 

  9. Hideg, A., Lukovszki, T.: asynchronous filling by myopic luminous robots. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds.) ALGOSENSORS 2020. LNCS, vol. 12503, pp. 108–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62401-9_8

    Chapter  Google Scholar 

  10. Hideg, A., Lukovszki, T., Forstner, B.: Filling arbitrary connected areas by silent robots with minimum visibility range. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 193–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_13

    Chapter  Google Scholar 

  11. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-45058-0_6

    Chapter  Google Scholar 

  12. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Gathering on rings for myopic asynchronous robots with lights. arXiv preprint arXiv:1911.04757 (2019)

  13. Kamei, S., Tixeuil, S.: An asynchronous maximum independent set algorithm by myopic luminous robots on grids. CoRR abs/2012.03399 (2020)

    Google Scholar 

  14. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: Proceedings of the 20th International Conference on Distributed Computing and Networking, pp. 218–227 (2019)

    Google Scholar 

  15. Poudel, P., Sharma, G.: Fast uniform scattering on a grid for asynchronous oblivious robots. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 211–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_17

    Chapter  Google Scholar 

  16. Pramanick, S., Samala, S.V., Pattanayak, D., Mandal, P.S.: Filling MIS vertices by myopic luminous robots. CoRR abs/2107.04885 (2021). arxiv.org/abs/2107.04885

  17. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/10.1137/S009753979628292X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramanick, S., Samala, S.V., Pattanayak, D., Mandal, P.S. (2023). Filling MIS Vertices of a Graph by Myopic Luminous Robots. In: Molla, A.R., Sharma, G., Kumar, P., Rawat, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2023. Lecture Notes in Computer Science, vol 13776. Springer, Cham. https://doi.org/10.1007/978-3-031-24848-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24848-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24847-4

  • Online ISBN: 978-3-031-24848-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics