Skip to main content

The Pedagogical Challenge of Machine Learning Education

  • Chapter
  • First Online:
Guide to Teaching Data Science

Abstract

Machine learning (ML) is the essence of the modeling phase of the data science workflow. In this chapter, we focus on the pedagogical challenges of teaching ML to various populations. We first describe the terms white box and black box in the context of ML education (Sect. 13.2). Next, we describe the pedagogical challenge with respect to different learner populations including data science major students as well as non-major students (Sect. 13.3). Then, we present three framework remarks for teaching ML (regarding statistical thinking, interdisciplinary projects, and the application domain knowledge), which, despite not being mentioned frequently in this part of the book, are important to be kept in mind in ML teaching processes (Sect. 13.4). We conclude this chapter by highlighting the importance of ML education in the context of the application domain (Sect. 13.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is based on Mike and Hazzan (2022). Machine learning for non-major data science students: A white box approach, special issue on Research on Data Science Education, The Statistics Education Research Journal (SERJ) 21(2), Article 10. Reprint is allowed by SERJ journal’s copyright policy.

References

  • Anderson, P., Bowring, J., McCauley, R., Pothering, G., & Starr, C. (2014). An undergraduate degree in data science: Curriculum and a decade of implementation experience. In Proceedings of the 45th ACM technical symposium on computer science education—SIGCSE’14, pp. 145–150. https://doi.org/10.1145/2538862.2538936

  • Ben-Zvi, D., & Garfield, J. B. (2004). The challenge of developing statistical literacy, reasoning and thinking. Springer.

    Book  Google Scholar 

  • Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J. M., & Eckersley, P. (2020). Explainable machine learning in deployment. In Proceedings of the 2020 conference on fairness, accountability, and transparency, pp. 648–657.

    Google Scholar 

  • Biehler, R., & Schulte, C. (2018). Paderborn symposium on data science education at school level 2017: The collected extended abstracts. Universitätsbibliothek.

    Google Scholar 

  • Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure of the observed learning outcome). Academic Press.

    Google Scholar 

  • Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning interpretability: A survey on methods and metrics. Electronics, 8(8), 832.

    Article  Google Scholar 

  • Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. The American Mathematical Monthly, 104(9), 801–823. https://doi.org/10.1080/00029890.1997.11990723

    Article  MathSciNet  MATH  Google Scholar 

  • Danyluk, A., & Leidig, P. (2021). Computing competencies for undergraduate data science curricula. https://www.acm.org/binaries/content/assets/education/curricula-recommendations/dstf_ccdsc2021.pdf

  • De Veaux, R. D., Agarwal, M., Averett, M., Baumer, B. S., Bray, A., Bressoud, T. C., Bryant, L., Cheng, L. Z., Francis, A., Gould, R., Kim, A. Y., Kretchmar, M., Lu, Q., Moskol, A., Nolan, D., Pelayo, R., Raleigh, S., Sethi, R. J., Sondjaja, M., & Tiruviluamala, N., et al. (2017). Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4(1), 15–30. https://doi.org/10.1146/annurev-statistics-060116-053930

  • Demchenko, Y., Belloum, A., Los, W., Wiktorski, T., Manieri, A., Brocks, H., Becker, J., Heutelbeck, D., Hemmje, M., & Brewer, S. (2016). EDISON data science framework: A foundation for building data science profession for research and industry. In 2016 IEEE international conference on cloud computing technology and science (CloudCom), pp. 620–626. https://doi.org/10.1109/CloudCom.2016.0107

  • Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. ArXiv Preprint ArXiv:1702.08608.

    Google Scholar 

  • Georgiopoulos, M., DeMara, R. F., Gonzalez, A. J., Wu, A. S., Mollaghasemi, M., Gelenbe, E., Kysilka, M., Secretan, J., Sharma, C. A., & Alnsour, A. J. (2009). A sustainable model for integrating current topics in machine learning research into the undergraduate curriculum. IEEE Transactions on Education, 52(4), 503–512.

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (vol. 1). MIT Press.

    Google Scholar 

  • Hazzan, O., & Mike, K. (2022). Machine learning: Out! Data science: In! https://cacm.acm.org/blogs/blog-cacm/261730-machine-learning-out-data-science-in/fulltext

  • Hilgard, S., Rosenfeld, N., Banaji, M. R., Cao, J., & Parkes, D. (2021). Learning representations by humans, for humans. In International conference on machine learning, pp. 4227–4238.

    Google Scholar 

  • Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems, pp. 1–16.

    Google Scholar 

  • Marcinkevičs, R., & Vogt, J. E. (2020). Interpretability and explainability: A machine learning zoo mini-tour. ArXiv Preprint ArXiv:2012.01805.

    Google Scholar 

  • Mike, K., & Hazzan, O. (2022). Machine learning for non-major data science students: A white box approach. Statistics Education Research Journal, 21(2), Article 10.

    Google Scholar 

  • Mike, K., Nemirovsky-Rotman, S., & Hazzan, O. (2020). Interdisciplinary education—The case of biomedical signal processing. In 2020 IEEE global engineering education conference (EDUCON), pp. 339–343. https://doi.org/10.1109/EDUCON45650.2020.9125200

  • Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

    Article  Google Scholar 

  • Sulmont, E., Patitsas, E., & Cooperstock, J. R. (2019a). Can you teach me to machine learn? In Proceedings of the 50th ACM technical symposium on computer science education, pp. 948–954. https://doi.org/10.1145/3287324.3287392

  • Sulmont, E., Patitsas, E., & Cooperstock, J. R. (2019b). What is hard about teaching machine learning to non-majors? Insights from classifying instructors’ learning goals. ACM Transactions on Computing Education, 19(4), 1–16. https://doi.org/10.1145/3336124

    Article  Google Scholar 

  • Suresh, H., Lao, N., & Liccardi, I. (2020). Misplaced trust: Measuring the interference of machine learning in human decision-making. In 12th ACM conference on web science, pp. 315–324

    Google Scholar 

  • Suresh, H., Lewis, K. M., Guttag, J. V., & Satyanarayan, A. (2021). Intuitively assessing ML model reliability through example-based explanations and editing model inputs. ArXiv Preprint ArXiv:2102.08540.

    Google Scholar 

  • Wing, J. M. (2020). Ten research challenge areas in data science. Harvard Data Science Review. https://doi.org/10.1162/99608f92.c6577b1f

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orit Hazzan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazzan, O., Mike, K. (2023). The Pedagogical Challenge of Machine Learning Education. In: Guide to Teaching Data Science. Springer, Cham. https://doi.org/10.1007/978-3-031-24758-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24758-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24757-6

  • Online ISBN: 978-3-031-24758-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics