Skip to main content

A Position-Aware Word-Level and Clause-Level Attention Network for Emotion Cause Recognition

  • 54 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13819)

Abstract

Emotion cause recognition is a vital task in natural language processing (NLP), which aims to identify the reason of emotion expressed in text. Both industry and academia have realized the importance of the relationship between emotion word and context. However, most existing methods usually ignore the fact that the position information is also crucial for detecting the emotion cause. When an emotion word occurs in a clause, its neighboring words and clauses should be given more attractive than others with a long distance. In this paper, we propose a novel framework Position-aware Word-level and Clause-level Attention (PWCA) Network based on bidirectional GRU. PWCA not only concentrates on the position information of emotion word, but also builds the relation between emotion clause and candidate clause by leveraging word-level and clause-level attention mechanism. The experimental results show that our model obviously outperforms other state-of-the-art methods. Through the visualization of attention over words, we validate our observation mentioned above.

Keywords

  • Emotion cause recognition
  • Position-aware
  • Word-level
  • Clause-level
  • Attention
  • Bidirectional GRU

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-24755-2_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-24755-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    http://hlt.hitsz.edu.cn/?page_id=694.

  2. 2.

    http://news.sina.com.cn/society/.

  3. 3.

    http://stanfordnlp.github.io/CoreNLP/.

References

  1. Gao, W., Li, S., Yat, S., Lee, M., Zhou, G., Huang, C.R.: Joint learning on sentiment and emotion classification. In: CIKM, pp. 1505–1508 (2013)

    Google Scholar 

  2. Wang, Y., Sun, A., Han, J., et al.: Sentiment analysis by capsules. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, pp. 1165–1174 (2018)

    Google Scholar 

  3. Chen, Y., Hou, W., Cheng, X., et al.: Joint learning for emotion classification and emotion cause detection. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 646–651 (2018)

    Google Scholar 

  4. Truong, Q.T., Lauw, H.W.: VistaNet: visual aspect attention network for multimodal sentiment analysis. In: AAAI (2019)

    Google Scholar 

  5. Gui, L., Hu, J., He, Y., et al.: A question answering approach to emotion cause extraction. In: EMNLP (2017)

    Google Scholar 

  6. Li, X., Song, K., Feng, S., et al.: A co-attention neural network model for emotion cause analysis with emotional context awareness. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4752–4757 (2018)

    Google Scholar 

  7. Das, D., Bandyopadhyay, S.: Emotions on Bengali blog texts: role of holder and topic. In: International Conference on Advances in Social Networks Analysis and Mining, pp. 587–592 (2011)

    Google Scholar 

  8. Chang, Y.C., Chen, C.C., Hsieh, Y.L., Hsu, W.L.: Linguistic template extraction for recognizing reader-emotion and emotional resonance writing assistance. In: ACL, pp. 775–780 (2015)

    Google Scholar 

  9. Cheng, J., Zhao, S., Zhang, J., et al.: Aspect-level sentiment classification with heat (hierarchical attention) network. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 97–106. ACM (2017)

    Google Scholar 

  10. Barbieri, F., Anke, L.E., Camacho-Collados, J., et al.: Interpretable emoji prediction via label-wise attention LSTMs. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4766–4771 (2018)

    Google Scholar 

  11. Gu, S., Zhang, L., Hou, Y., et al.: A position-aware bidirectional attention network for aspect-level sentiment analysis. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 774–784 (2018)

    Google Scholar 

  12. Wang, J., Li, J., Li, S., et al.: Aspect sentiment classification with both word-level and clause-level attention networks. In: IJCAI, pp. 4439–4445 (2018)

    Google Scholar 

  13. Lee, S.Y.M., Chen, Y., Huang, C.R.: A text-driven rule-based system for emotion cause detection. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Association for Computational Linguistics, pp. 45–53 (2010)

    Google Scholar 

  14. Russo, I., Caselli, T., Rubino, F., Boldrini, E., Mart´ınez-Barco, P.: Emocause: an easy-adaptable approach to emotion cause contexts. In: Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, pp. 153–160 (2011)

    Google Scholar 

  15. Gui, L., Yuan, L., Xu, R., et al.: Emotion cause detection with linguistic construction in chinese weibo text. In: Natural Language Processing and Chinese Computing, pp. 457–464. Springer, Heidelberg (2014)

    Google Scholar 

  16. Ghazi D, Inkpen D, Szpakowicz S. Detecting emotion stimuli in emotion-bearing sentences. International Conference on Intelligent Text Processing and Computational Linguistics. Springer, Cham, 2015: 152–165

    Google Scholar 

  17. Gui, L., Wu, D., Xu, R., Lu, Q., Zhou, Y.: Event-driven emotion cause extraction with corpus construction. In: EMNLP, pp. 1639–1649 (2016)

    Google Scholar 

  18. Xu, R., Hu, J., Lu, Q., et al.: An ensemble approach for emotion cause detection with event extraction and multi-kernel SVMs. Tsinghua Sci. Technol. 22(6), 646–659 (2017)

    CrossRef  Google Scholar 

  19. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Comput. Sci. (2014)

    Google Scholar 

  20. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. In: ICLR, pp. 1–12 (2013)

    Google Scholar 

  21. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network (2014)

    Google Scholar 

  22. Wang, Y., Huang, M., Zhao, L.: Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (2016)

    Google Scholar 

  23. Chung, J., Gulcehre, C., Cho, K.H., et al.: Empirical evaluation of gated recurrent neural networks on sequence modeling (2014). arXiv preprint arXiv:1412.3555

  24. Manning, C., Surdeanu, M., Bauer, J., et al.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  25. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MATH  Google Scholar 

  26. Chen, Y., Lee, S.Y.M., Li, S., Huang, C.R.: Emotion cause detection with linguistic constructions. In: Coling, pp. 179–187 (2010)

    Google Scholar 

  27. Li, W., Xu, H.: Text-based emotion classification using emotion cause extraction. Expert Syst. Appl. 41(4), 1742–1749 (2014)

    CrossRef  Google Scholar 

  28. Diao, Y., Lin, H., Yang, L., et al.: Emotion cause detection with enhanced-representation attention convolutional-context network. Soft. Comput. 25(2), 1297–1307 (2021)

    CrossRef  Google Scholar 

  29. Bostan, L.A.M., Klinger, R.: Token sequence labeling vs. clause classification for english emotion stimulus detection. In: Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics, COLING 2020, Barcelona, Spain, 12–13 December 2020, pp. 58–70. Association for Computational Linguistics (2020)

    Google Scholar 

  30. Chen, X., Li, Q., Wang, J.: Conditional causal relationships between emotions and causes in texts. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 3111–3121. Association for Computational Linguistics (2020)

    Google Scholar 

  31. Hu, G., Lu, G., Zhao, Y.: FSS-GCN: a graph convolutional networks with fusion of semantic and structure for emotion cause analysis. Knowl.-Based Syst. 212(1), 106584 (2020)

    Google Scholar 

  32. Li, X., Gao, W., Feng, S., et al.: Boundary detection with BERT for span-level emotion cause analysis. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by grant from the Natural Science Foundation of China (No. 62006130, 62066044), Inner Mongolia Science Foundation (No. 2022MS06028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Diao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Diao, Y., Yang, L., Fan, X., Lin, H. (2023). A Position-Aware Word-Level and Clause-Level Attention Network for Emotion Cause Recognition. In: Chang, Y., Zhu, X. (eds) Information Retrieval. CCIR 2022. Lecture Notes in Computer Science, vol 13819. Springer, Cham. https://doi.org/10.1007/978-3-031-24755-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24755-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24754-5

  • Online ISBN: 978-3-031-24755-2

  • eBook Packages: Computer ScienceComputer Science (R0)