Skip to main content

Social Robots in Learning Scenarios: Useful Tools to Improve Students’ Attention or Potential Sources of Distraction?

  • Conference paper
  • First Online:
Social Robotics (ICSR 2022)

Abstract

In this paper, we speculate about the use of social robots as convenient tools for improving learning in an educational scenario. We introduce an experimental setup in which students listen a story read by a storyteller while their attention levels are monitored through electrophysiological and behavioral measures: if the participants are judged inattentive by an electroencephalogram based measure or by the head’s movements, a social robot will produce feedbacks to stimulate their attention to the shared task. We hypothesize that the participants will then realize their attention drop and will shift back their focus to the task, improving their learning. A comprehension questionnaire together with the score of a Narrative Transport Questionnaire, joined with the analysis of the collected electrophysiological data are explored to verify the effectiveness of this approach. First results with 16 adult students indicate how in learning scenarios social robots could act as a potential elements of distraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intel RealSense D435i: https://www.intelrealsense.com/depth-camera-d435i/.

  2. 2.

    Enobio from NeuroElectrics: https://www.neuroelectrics.com/solutions/enobio.

  3. 3.

    Nao robot from Softbank Robotics: https://www.softbankrobotics.com/emea/en/nao.

  4. 4.

    ROS, Robot Operating System: https://wiki.ros.org/kinetic.

  5. 5.

    Clochette is the story of a seamstress who becomes lame because of a man: https://librivox.org/short-story-collection-096-by-various/.

  6. 6.

    Mediapipe library from Google: https://mediapipe.dev/.

  7. 7.

    Neurosurfer from NeuroElectrics: https://www.neuroelectrics.com/wiki/index.php/MediaWiki:Neurofeedback-url.

  8. 8.

    SciPy library: https://scipy.org/.

References

  1. Alchalabi, A.E., Shirmohammadi, S., Eddin, A.N., Elsharnouby, M.: Focus: Detecting ADHD patients by an EEG-based serious game. IEEE Trans. Instrum. Measur. 67(7), 1512–1520 (2018)

    Article  Google Scholar 

  2. American Psychological Association: APA dictionary of psychology, 2nd edn. American Psychological Association, Washington, D.C (2015)

    Google Scholar 

  3. Anzalone, S., Tanet, A., Pallanca, O., Cohen, D., Chetouani, M.: A humanoid robot controlled by neurofeedback to reinforce attention in autism spectrum disorder. In: Proceedings of the 3rd Italian Workshop on Artificial Intelligence and Robotics (2016)

    Google Scholar 

  4. Anzalone, S., Tanet, A., Pallanca, O., Cohen, D., Chetouani, M.: A humanoid robot controlled by neurofeedback to reinforce attention in autism spectrum disorder. In: Proceedings of the 3rd Italian Workshop on Artificial Intelligence and Robotics. A workshop of the XV International Conference of the Italian Association for Artificial Intelligence (AI*IA 2016) (2016)

    Google Scholar 

  5. Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. Int. J. Soc. Robot. 7(4), 465–478 (2015)

    Article  Google Scholar 

  6. Beatty, J., Legewie, H.: Biofeedback and Behavior: Introduction to the Proceedings, pp. 1–5. Springer, US, Boston, MA (1977), ISBN 978-1-4684-2526-0, https://doi.org/10.1007/978-1-4684-2526-0_1

  7. Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., Tanaka, F.: Social robots for education: a review. Sci. Robot. 3(21), eaat5954 (2018)

    Google Scholar 

  8. Bussalb, A., et al.: Clinical and experimental factors influencing the efficacy of neurofeedback in ADHD: a meta-analysis. Front. Psychiatry 10, 35 (2019)

    Article  Google Scholar 

  9. Clarke, A.R., Barry, R.J., Karamacoska, D., Johnstone, S.J.: The EEG theta/beta ratio: a marker of arousal or cognitive processing capacity? Appl. Psychophysiol. Biofeedback 44(2), 123–129 (2019). https://doi.org/10.1007/s10484-018-09428-6

    Article  Google Scholar 

  10. Coelli, S., Sclocco, R., Barbieri, R., Reni, G., Zucca, C., Bianchi, A.M.: EEG-based index for engagement level monitoring during sustained attention. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1512–1515 (2015)

    Google Scholar 

  11. Cortese, S., et al.: Neurofeedback for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J. Am. Acad. Child Adolesc. Psychiatry 55(6), 444–455 (2016)

    Article  Google Scholar 

  12. Dobrakowski, P., Łebecka, G.: Individualized neurofeedback training may help achieve long-term improvement of working memory in children with adhd. Clin. EEG Neurosci. 51(2), 94–101 (2020)

    Article  Google Scholar 

  13. Donnermann, M., Schaper, P., Lugrin, B.: Integrating a social robot in higher education - a field study. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 573–579 (2020)

    Google Scholar 

  14. Enriquez Geppert, S., Smit, D., Garcia Pimenta, M., Arns, M.: Neurofeedback as a treatment intervention in ADHD: current evidence and practice, June 2019

    Google Scholar 

  15. Feng, H., Gutierrez, A., Zhang, J., Mahoor, M.H.: Can NAO robot improve eye-gaze attention of children with high functioning autism? In: 2013 IEEE International Conference on Healthcare Informatics, pp. 484–484 (2013)

    Google Scholar 

  16. Furutani, R., Seino, Y., Tezuka, T., Satoh, T.: Monitoring the level of attention by posture measurement and EEG. In: Papafragou, A., Grodner, D., Mirman, D., Trueswell, J.C. (eds.) Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Recogbizing and Representing Events, CogSci 2016, Philadelphia, PA, USA, 10–13 August 2016, cognitivesciencesociety.org (2016)

    Google Scholar 

  17. Goldberg, P., et al.: Attentive or Not? toward a machine learning approach to assessing students’ visible engagement in classroom instruction. Educ. Psychol. Rev. 33(1), 27–49 (2019). https://doi.org/10.1007/s10648-019-09514-z

    Article  Google Scholar 

  18. Green, M., Brock, T.: Transport narrative questionnaire (2013)

    Google Scholar 

  19. Maeda, R., Even, J., Kanda, T.: Can a social robot encourage children’s self-study? In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1236–1242 (2019)

    Google Scholar 

  20. Manna, A., et al.: Neural correlates of focused attention and cognitive monitoring in meditation. Brain Res. Bull. 82(1), 46–56 (2010). ISSN 0361–9230

    Google Scholar 

  21. Mijović, P., Ković, V., Vos, M.D., Mačužić, I., Todorović, P., Jeremić, B., Gligorijević, I.: Towards continuous and real-time attention monitoring at work: reaction time versus brain response. Ergonomics 60(2), 241–254 (2017)

    Article  Google Scholar 

  22. Müller, M., Gruber, T., Keil, A.: Modulation of induced gamma band activity in the human EEG by attention and visual information processing, January 2000

    Google Scholar 

  23. Nahaltahmasebi, P., Chetouani, M., Cohen, D., Anzalone, S.: Detecting attention breakdowns in robotic neurofeedback systems. In: Proceedings of the 4th Italian Workshop on Artificial Intelligence and Robotics. A workshop of the XVI International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017) (2017)

    Google Scholar 

  24. Nasir, J., Bruno, B., Chetouani, M., Dillenbourg, P.: What if social robots look for productive engagement? Int. J. Soc. Robot. 14(1), 55–71 (2022)

    Article  Google Scholar 

  25. Ogrim, G., Kropotov, J., Hestad, K.: The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: Sensitivity, specificity, and behavioral correlates. Psychiatry Res. 198(3), 482–488 (2012). ISSN 0165–1781

    Google Scholar 

  26. Osanai, H., Kusumi, T.: Reliability and validity of the narrative transportation scale in Japanese. Japan. J. Pers. 25(1), 50–61 (2016)

    Google Scholar 

  27. Phyo Wai, A.A., Dou, M., Guan, C.: Generalizability of EEG-based mental attention modeling with multiple cognitive tasks. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2959–2962 (2020)

    Google Scholar 

  28. Shamsuddin, S., Yussof, H., Ismail, L.I., Mohamed, S., Hanapiah, F.A., Zahari, N.I.: Initial response in HRI- a case study on evaluation of child with autism spectrum disorders interacting with a humanoid robot NAO. Procedia Engineering, vol. 41, pp. 1448–1455 (2012). ISSN 1877–7058, international Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)

    Google Scholar 

  29. Slattery, E.J., O’Callaghan, E., Ryan, P., Fortune, D.G., McAvinue, L.P.: Popular interventions to enhance sustained attention in children and adolescents: a critical systematic review. Neurosci. Biobehav. Rev. 137, 104633 (2022). ISSN 0149–7634

    Google Scholar 

  30. Szulewski, A., Roth, N., Howes, D.: The use of task-evoked pupillary response as an objective measure of cognitive load in novices and trained physicians: a new tool for the assessment of expertise. Acad. Med. J. the Assoc. Am. Med. Colleges 90(7), 981–987 (2015)

    Google Scholar 

  31. Wang, K.J., Sugaya, M.: Focus and concentrate! exploring the use of conversational robot to improve self-learning performance during pandemic isolation by closed-loop brainwave neurofeedback. In: 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 928–932 (2021)

    Google Scholar 

  32. Weiss, A., Bartneck, C.: Meta analysis of the usage of the godspeed questionnaire series. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 381–388 (2015)

    Google Scholar 

  33. Whitton, N., Moseley, A.: Deconstructing engagement: rethinking involvement in learning. Simul. Gaming 45(4–5), 433–449 (2014)

    Article  Google Scholar 

  34. Yi-Jung, L., Kang-Ming, C.: Improvement of attention in elementary school students through fixation focus training activity. Int. J. Environ. Res. Public Health 17, 4780 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore M. Anzalone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charpentier, S., Chetouani, M., Truck, I., Cohen, D., Anzalone, S.M. (2022). Social Robots in Learning Scenarios: Useful Tools to Improve Students’ Attention or Potential Sources of Distraction?. In: Cavallo, F., et al. Social Robotics. ICSR 2022. Lecture Notes in Computer Science(), vol 13818. Springer, Cham. https://doi.org/10.1007/978-3-031-24670-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24670-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24669-2

  • Online ISBN: 978-3-031-24670-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics