Skip to main content

Affective Human-Robot Interaction with Multimodal Explanations

  • Conference paper
  • First Online:
Social Robotics (ICSR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13817))

Included in the following conference series:

Abstract

Facial expressions are one of the most practical and straightforward ways to communicate emotions. Facial Expression Recognition has been used in lots of fields such as human behaviour understanding and health monitoring. Deep learning models can achieve excellent performance in facial expression recognition tasks. As these deep neural networks have very complex nonlinear structures, when the model makes a prediction, it is not easy for human users to understand what is the basis for the model’s prediction. Specifically, we do not know which facial units contribute to the classification more or less. Developing affective computing models with more explainable and transparent feedback for human interactors is essential for a trustworthy human-robot interaction. Compared to “white-box" approaches, “black-box” approaches using deep neural networks, which have advantages in terms of overall accuracy but lack reliability and explainability. In this work, we introduce a multimodal affective human-robot interaction framework, with visual-based and verbal-based explanation, by Layer-Wise Relevance Propagation (LRP) and Local Interpretable Mode-Agnostic Explanation (LIME). The proposed framework has been tested on the KDEF dataset, and in human-robot interaction experiments with the Pepper robot. This experimental evaluation shows the benefits of linking deep learning emotion recognition systems with explainable strategies.

Supported by University of Manchester and UKRI Node on Trust (EP/V026682/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://imotions.com/blog/facial-action-coding-system/.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Arrieta, A.B., et al.: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 59–66. IEEE (2018)

    Google Scholar 

  5. Dubey, A.K., Jain, V.: Automatic facial recognition using vgg16 based transfer learning model. J. Inf. Optim. Sci. 41(7), 1589–1596 (2020)

    Google Scholar 

  6. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)

    Google Scholar 

  7. Ekman, P., Friesen, W.V., Ellsworth, P.: Emotion in the human face: Guidelines for research and an integration of findings, vol. 11. Elsevier (2013)

    Google Scholar 

  8. Ivanovs, M., Kadikis, R., Ozols, K.: Perturbation-based methods for explaining deep neural networks: a survey. Pattern Recogn. Lett. 150, 228–234 (2021)

    Article  Google Scholar 

  9. Kavila, S.D., Bandaru, R., Gali, T.V.M.B., Shafi, J.: Analysis of cardiovascular disease prediction using model-agnostic explainable artificial intelligence techniques. In: Principles and Methods of Explainable Artificial Intelligence in Healthcare, pp. 27–54. IGI Global (2022)

    Google Scholar 

  10. Lien, J.J., Kanade, T., Cohn, J.F., Li, C.C.: Automated facial expression recognition based on facs action units. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 390–395. IEEE (1998)

    Google Scholar 

  11. Lundqvist, D., Flykt, A., Öhman, A.: Karolinska directed emotional faces. Cogn. Emot. (1998)

    Google Scholar 

  12. Malik, S., Kumar, P., Raman, B.: Towards interpretable facial emotion recognition. In: Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1–9 (2021)

    Google Scholar 

  13. Martinez, M., et al.: Emotion detection deficits and decreased empathy in patients with alzheimer’s disease and parkinson’s disease affect caregiver mood and burden. Front. Aging Neurosci. 10, 120 (2018)

    Article  Google Scholar 

  14. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209 (2019)

    Google Scholar 

  15. Nie, W., Zhang, Y., Patel, A.: A theoretical explanation for perplexing behaviors of backpropagation-based visualizations. In: International Conference on Machine Learning, pp. 3809–3818. PMLR (2018)

    Google Scholar 

  16. Rathod, J., Joshi, C., Khochare, J., Kazi, F.: Interpreting a black-box model used for scada attack detection in gas pipelines control system. In: 2020 IEEE 17th India Council International Conference (INDICON), pp. 1–7. IEEE (2020)

    Google Scholar 

  17. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  18. Robnik-Šikonja, M., Bohanec, M.: Perturbation-based explanations of prediction models. In: Zhou, J., Chen, F. (eds.) Human and Machine Learning. HIS, pp. 159–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90403-0_9

    Chapter  Google Scholar 

  19. Rosenberg, E.L., Ekman, P.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, Oxford (2020)

    Google Scholar 

  20. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

    Book  Google Scholar 

  21. Taheri, A., Meghdari, A., Alemi, M., Pouretemad, H.: Human-robot interaction in autism treatment: a case study on three pairs of autistic children as twins, siblings, and classmates. Int. J. Social Rob. 10(1), 93–113 (2018)

    Article  Google Scholar 

  22. Tian, Y.I., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach, Intell. 23(2), 97–115 (2001)

    Article  Google Scholar 

  23. Yao, L., Wan, Y., Ni, H., Xu, B.: Action unit classification for facial expression recognition using active learning and svm. Multimedia Tools Appl. 80(16), 24287–24301 (2021)

    Article  Google Scholar 

  24. Yin, P., Huang, L., Lee, S., Qiao, M., Asthana, S., Nakamura, T.: Diagnosis of neural network via backward deduction. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 260–267. IEEE (2019)

    Google Scholar 

  25. Yu, C.: Robot Behavior Generation and Human Behavior Understanding in Natural Human-Robot Interaction. Ph.D. thesis, Institut polytechnique de Paris (2021)

    Google Scholar 

  26. Yu, C., Tapus, A.: Interactive robot learning for multimodal emotion recognition. In: Salichs, M.A., et al. (eds.) ICSR 2019. LNCS (LNAI), vol. 11876, pp. 633–642. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35888-4_59

    Chapter  Google Scholar 

  27. Yu, C., Tapus, A.: Multimodal emotion recognition with thermal and rgb-d cameras for human-robot interaction. In: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, pp. 532–534 (2020)

    Google Scholar 

  28. Zhang, H., Yu, C., Tapus, A.: Why do you think this joke told by robot is funny? the humor style matters. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 572–577. IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Yu, C., Cangelosi, A. (2022). Affective Human-Robot Interaction with Multimodal Explanations. In: Cavallo, F., et al. Social Robotics. ICSR 2022. Lecture Notes in Computer Science(), vol 13817. Springer, Cham. https://doi.org/10.1007/978-3-031-24667-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24667-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24666-1

  • Online ISBN: 978-3-031-24667-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics