Skip to main content

Climate Change Impact on Major River Basins in the Indian Himalayan Region: Risk Assessment and Sustainable Management

  • Chapter
  • First Online:
Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya

Abstract

Billions of people relay on water resources of the Himalayan region for drinking, irrigation, and other domestic purposes. Abundance of natural resources makes this region suitable for human settlements, despite the fact that the area experiences frequent natural hazards. Water resources including major rivers are one of the important components, responsible for high biodiversity of the Himalayas and its role in global atmospheric circulation. Recent climate changes have proved to affect the precipitation pattern and ice cover of the Himalayas, causing variations in the dynamics of rivers in the area. Climate change–induced variation in river flow quantity, timing, and unpredictability raises the danger of ecological changes and has a negative impact on aquatic life and the ecosystem depending on rivers. Agriculture is one important sector that is at highest risk due to climate change. This is a serious concern as the runoff patterns of the rivers are mainly determined by the precipitation pattern and ice cover in the upper reaches. Reduction in ice cover reduces the water storage capacity of the Himalayas, and fluctuations in the precipitation pattern cause floods and droughts. The increased frequency of natural hazards including floods and droughts affects the economy and is a threat to people’s life. Climate change effects on water resources, namely, Himalayan snow and ice reservoirs and lake and river systems and the risk associated with it, can be monitored using different hydrological models. To cover vast geographical areas of the Himalayan region, adequate hydrological observatories need to be installed in order to monitor and record time series data of the hydrological parameters. Systematic monitoring will help to predict how climate change will affect water resources in the future. Sustainable management of local resources based on suitable practices, adaptation strategies, and need-specific policies relevant to basin climate can further reduce frequent climate change-related impacts, risk, and vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355(1–4), 148–163.

    Article  ADS  Google Scholar 

  • Anja du, P. (2019). Climate change and freshwater resources: Current observations, impacts, vulnerabilities and future risks. Springer. https://doi.org/10.1007/978-3-030-03186-2

    Book  Google Scholar 

  • Aquastat, F. A. O. (2011). FAO’s information system on water and agriculture. Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Bandyopadhyay, J., & Gyawali, D. (1994). Himalayan water resources: Ecological and political aspects of management. Mountain Research and Development, 14, 1–24.

    Article  Google Scholar 

  • Berger, S., Bliefernicht, J., Linstädter, A., Canak, K., Guug, S., Heinzeller, D., Hingerl, L., Mauder, M., Neidl, F., Quansah, E., & Salack, S. (2019). The impact of rain events on CO2 emissions from contrasting land use systems in semi-arid West African savannas. Science of the Total Environment, 647, 1478–1489.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters, 33(8).

    Google Scholar 

  • Climate change adaptation in Himachal Pradesh: Sustainable strategies for water resources 2010. Asian Development Bank.

    Google Scholar 

  • CWC. (2015). Central Water Commission, Annual Report 2015. Government of India Ministry of Water Resources, River Development & Ganga Rejuvenation.

    Google Scholar 

  • Dadson, S. J., & Church, M. (2005). Postglacial topographic evolution of glaciated valleys: A stochastic landscape evolution model. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 30(11), 1387–1403.

    Article  ADS  Google Scholar 

  • Dahal, P., Shrestha, M. L., Panthi, J., & Pradhananga, D. (2020). Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environmental Research, 185, 109430.

    Google Scholar 

  • Dilshad, T., Mallick, D., Udas, P. B., Goodrich, C. G., Prakash, A., Gorti, G., Bhadwal, S., Anwar, M. Z., Khandekar, N., Hassan, S. T., & Habib, N. (2019). Growing social vulnerability in the river basins: Evidence from the Hindu Kush Himalaya (HKH) region. Environmental Development, 31, 19–33.

    Article  Google Scholar 

  • Dyurgerov, M. B., & Meier, M. F. (2005). Glaciers and the changing Earth system: A 2004 snapshot (Vol. 58). Institute of Arctic and Alpine Research, University of Colorado.

    Google Scholar 

  • Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 81(3), 417–426.

    Article  ADS  Google Scholar 

  • Eriksson, M., Jianchu, X., Shrestha, A. B., Vaidya, R. A., Nepal, S., & Sandström, K. (2009). The changing Himalayas – Impact of climate change on water resources and livelihoods in the greater Himalayas. International Centre for Integrated Mountain Development. ISBN 978 92 9115 111 0 (printed) 978 92 9115 114 1 (electronic).

    Book  Google Scholar 

  • Gain, A. K., Immerzeel, W. W., Sperna Weiland, F. C., & Bierkens, M. F. P. (2011). Impact of climate change on the stream flow of the lower Brahmaputra: Trends in high and low flows based on discharge-weighted ensemble modelling. Hydrology and Earth System Sciences, 15(5), 1537–1545.

    Article  ADS  Google Scholar 

  • Gosain, A. K., Rao, S., & Mani, A. (2011). Hydrological modelling: A case study of the Kosi Himalayan basin using SWAT. CABI Publishing.

    Google Scholar 

  • Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445.

    Article  ADS  CAS  PubMed  Google Scholar 

  • ICIMOD, (2002). Hazard and RISK Mapping (Internal Report). Kathmandu: Participatory Disaster Management Programme (Nep 99/014) and ICIMOD.

    Google Scholar 

  • ICIMOD (2005). Reports of APN 2004-03-CMY Project “Inventory of Glaciers and Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of India, Pakistan and China/Tibet Autonomous Region”. ICIMOD.

    Google Scholar 

  • ICIMOD. (2010). Climate change vulnerability of mountain ecosystems in the Eastern Himalayas. International Centre for Integrated Mountain Development. 104 p.

    Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382–1385.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Immerzeel, W. W., van Beek, L. P. H., Konz, M., Shrestha, A. B., Bierkens, M. F. P. (2012). Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change 10(3–4), 721–736.

    Google Scholar 

  • Immerzeel, W. W., Pellicciotti, F., & Bierkens, M. F. P. (2013). Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, 6(9), 742–745.

    Article  ADS  CAS  Google Scholar 

  • India-WRIS. (2012). River basin atlas of India. RRSC-West, NRSC, ISRO.

    Google Scholar 

  • IPCC. (2007). Summary for policymakers of climate change 2007: The physical science basic. Contribution of working group to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Climate change. The physical science basis, working group I. Contribution to the fifth assessment report of the intergovernmental panel on climate change, WMO/UNEP. Cambridge University Press.

    Google Scholar 

  • ISDR, & UNEP. (2007). International strategy for disaster reduction and United Nations environment programme annual report.

    Google Scholar 

  • Khan, A. A., Pant, N. C., Goswami, A., Lal, R., & Joshi, R. (2015). Critical evaluation and assessment of average annual precipitation in the Indus, the Ganges and the Brahmaputra basins, Northern India. In R. Joshi, K. Kumar, & L. M. S. Palni (Eds.), Dynamics of climate change and water resources of Northwestern Himalaya (pp. 67–84). Springer.

    Chapter  Google Scholar 

  • Kumar, K. R., Sahai, A. K., Kumar, K. K., Patwardhan, S. K., Mishra, P. K., Revadekar, J. V., Kamala, K., & Pant, G. B. (2006). High-resolution climate change scenarios for India for the 21st century. Current Science, 334–345.

    Google Scholar 

  • Laghari, A. N., Vanham, D., & Rauch, W. (2012). The Indus basin in the framework of current and future water resources management. Hydrology and Earth System Sciences, 16(4), 1063–1083.

    Article  ADS  Google Scholar 

  • Lilhare, R., Garg, V., & Nikam, B. R. (2015). Application of GIS-coupled modified MMF model to estimate sediment yield on a watershed scale. Journal of Hydrologic Engineering, 20(6), C5014002.

    Google Scholar 

  • Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587–592.

    Article  ADS  Google Scholar 

  • Maurya, A. S., Shah, M., Deshpande, R. D., Bhardwaj, R. M., Prasad, A., & Gupta, S. K. (2011). Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrological Processes, 25(10), 1521–1530.

    Article  ADS  Google Scholar 

  • Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E., Füreder, L., et al. (2017). Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences, 114(37), 9770–9778.

    Article  ADS  CAS  Google Scholar 

  • Min, S. K., Zhang, X., Zwiers, F. W., & Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470(7334), 378–381.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mir, B. H., Kumar, R., & Rather, N. A. (2019). Water resources scenario of Himalayan region. In R. Kumar et al. (Eds.), Applied agricultural practices for mitigating climate change (Vol. 2, 1st ed.). CRC Press/Taylor & Francis Group.

    Google Scholar 

  • Mirza, M. M. Q. (2002). Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global Environmental Change, 12(2), 127–138.

    Article  Google Scholar 

  • Mirza MMQ (2011) Climate change, flooding in South Asia and implications. Regional Environmental Change 11, S95–S107.

    Google Scholar 

  • Mirza, M. M. Q. (Ed.). (2004). The Ganges water diversion: Environmental effects and implications (Vol. 49). Springer.

    Google Scholar 

  • Mirza, M. M. Q., Warrick, R. A., & Ericksen, N. J. (2003). The implications of climate change on floods of the Ganges, Brahmaputra and Meghna rivers in Bangladesh. Climatic Change, 57(3), 287–318.

    Article  Google Scholar 

  • Mishra, V., & Lilhare, R. (2016). Hydrologic sensitivity of Indian sub-continental river basins to climate change. Global and Planetary Change, 139, 78–96.

    Article  ADS  Google Scholar 

  • Mishra, V., Ganguly, A. R., Nijssen, B., & Lettenmaier, D. P. (2015). Changes in observed climate extremes in global urban areas. Environmental Research Letters, 10(2), 024005.

    Article  ADS  Google Scholar 

  • Mishra, V., Shah, H., López, M. R. R., Lobanova, A., & Krysanova, V. (2020). Does comprehensive evaluation of hydrological models influence projected changes of mean and high flows in the Godavari River basin?. Climatic Change, 163, 1187–1205.

    Google Scholar 

  • NCIWRD. (1999). Integrated water resource development: A plan for action (Report of the National Commission for Integrated Water Resource Development (NCIWRD)) (Vol. I). Ministry of Water Resources, Government of India.

    Google Scholar 

  • Nepal, S., & Shrestha, A. B. (2015). Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra River basins: A review of the literature. International Journal of Water Resources Development, 31(2), 201–218.

    Article  Google Scholar 

  • NMSHE. (2010). National Mission for sustaining the Himalayan ecosystem. Government of India.

    Google Scholar 

  • NOAA, U. S. (2009). National oceanic and atmospheric administration. NOAA.

    Google Scholar 

  • Oglethorpe, J., Regmi, S., Bartlett, R., Dongol, B. S., Wikramanayake, E., & Freeman, S. (2015). The value of a river basin approach in climate adaptation (p. 57). Organizers.

    Google Scholar 

  • Patel, A., Goswami, A., Dharpure, J. K., & Thamban, M. (2021). Rainfall variability over the Indus, Ganga, and Brahmaputra River basins: A spatio-temporal characterisation. Quaternary International, 575, 280–294.

    Article  ADS  Google Scholar 

  • Pradhan, N. S., Das, P. J., Gupta, N., & Shrestha, A. B. (2021). Sustainable management options for healthy rivers in South Asia: The case of Brahmaputra. Sustainability, 13(3), 1087.

    Article  Google Scholar 

  • Prasch, M., Marke, T., Strasser, U., & Mauser, W. (2011). Large scale integrated hydrological modelling of the impact of climate change on the water balance with DANUBIA. Advances in Science and Research, 7(1), 61–70.

    Article  ADS  Google Scholar 

  • Qin, D. H. (2002). Assessment of environment change in western China, 2nd Volume, Prediction of environment change in western China. Beijing: Science Press, p64, 73, 115–132.

    Google Scholar 

  • Rees, H. G., & Collins, D. N. (2006). Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes: An International Journal, 20(10), 2157–2169.

    Article  ADS  Google Scholar 

  • Reynolds, J. M. (2014). Natural disaster preparedness for hydropower projects in high mountain environments. In HYDRO 2014 conference proceedings, Cernobbio, Italy, 13th–15th October 2014.

    Google Scholar 

  • Rupper, S., Schaefer, J. M., Burgener, L. K., Koenig, L. S., Tsering, K., Cook, E. R., (2012). Sensitivity and response of Bhutanese glaciers to atmospheric warming. Geophysical Research Letters 39, L19503. https://doi.org/10.1029/2012GL053010

  • Schild, A. (2008). ICIMOD’s position on climate change and mountain systems: The case of the Hindu Kush-Himalayas. Mountain Research and Development, 28, 328–331.

    Article  Google Scholar 

  • Sharma, K. P., Vorosmarty, C. J., & Moore, B. (2000). Sensitivity of the Himalayan hydrology to land-use and climatic changes. Climatic Change, 47(1), 117–139.

    Article  CAS  Google Scholar 

  • Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31(1), 79–105.

    Article  ADS  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786.

    Article  ADS  Google Scholar 

  • Shrestha, A. B., Agrawal, N. K., Alfthan, B., Bajracharya, S. R., Maréchal, J., & Oort, B. V. (2015). The Himalayan climate and water atlas: Impact of climate change on water resources in five of Asia’s major river basins.

    Google Scholar 

  • Singh, P., & Bengtsson, L. (2004). Hydrological sensitivity of a large Himalayan basin to climate change. Hydrological Processes, 18(13), 2363–2385.

    Article  ADS  Google Scholar 

  • Slovic, P. (1999). Trust, emotion, sex, politics, and science: Surveying the risk-assessment battlefield. Risk Analysis, 19(4), 689–701.

    Article  CAS  PubMed  Google Scholar 

  • Sud, R., Mishra, A., Varma, N., & Bhadwal, S. (2015). Adaptation policy and practice in densely populated glacier-fed river basins of South Asia: a systematic review. Regional Environmental Change, 15, 825–836.

    Google Scholar 

  • Vaidya, R. A., Shrestha, M. S., Nasab, N., Gurung, D. R., Kozo, N., Pradhan, N. S., & Wasson, R. J. (2019). Disaster risk reduction and building resilience in the Hindu Kush Himalaya. In P. Wester, A. Mishra, A. Mukherji, & A. Shrestha (Eds.), The Hindu Kush Himalaya assessment (pp. 389–419). Springer.

    Chapter  Google Scholar 

  • Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (2019). The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people (p. 627). Springer Nature.

    Book  Google Scholar 

  • Wiltshire, A. J. (2014). Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. The Cryosphere, 8(3), 941–958.

    Article  ADS  Google Scholar 

  • Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. U. N., & Wilkes, A. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23(3), 520–530.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Vice-Chancellor, Central University of Punjab, for his administrative support for this work. K. Amrutha would like to acknowledge DST for providing INSPIRE fellowship toward a PhD.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amrutha, K., Patnaik, R., Sandeep, A.S., Pattanaik, J.K. (2023). Climate Change Impact on Major River Basins in the Indian Himalayan Region: Risk Assessment and Sustainable Management. In: Sharma, S., Kuniyal, J.C., Chand, P., Singh, P. (eds) Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-031-24659-3_3

Download citation

Publish with us

Policies and ethics