Skip to main content

Modelling of Reference Crop Evapotranspiration in Humid-Wet Tropical Region of India

  • Chapter
  • First Online:
Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya

Abstract

Reference crop evapotranspiration is an essential parameter for crop water management and the hydrological cycle. Therefore, selecting methods to predict the reference crop evapotranspiration plays an essential role in agriculture water management and the hydrological cycle. This study attempts to compare different methods for the estimation of reference crop evapotranspiration in the subtropical region of Assam. The Indian Meteorological Department (IMD) gridded temperature, and rainfall data at 1° × 1° spatial resolution was used for the period 1971–2011. Three methods of estimation and comparison of reference crop evapotranspiration were used, which include Thornthwaite’s plan (1948), Hargreaves and Samani’s method (1985), and Turc’s method (1961). Thornthwaite’s method was likely to give better results for humid regions for the estimation of reference crop evapotranspiration. The reference crop evapotranspiration, as well as rainfall in eastern Assam, was found to be high in comparison to other districts of Assam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998a). Crop evapotranspiration-guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper 56) (Vol. 300(9)). FAO.

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998b). Crop evapotranspiration: Guidelines for computing crop water requirements (Irrigation and Drainage Paper) (Vol. 56, p. 300). Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Baruah, U. D. (2018). Crops and farmers’ responses to climate change: A case study of Assam. (PhD), Gauhati University.

    Google Scholar 

  • Bhattacharjya, B. K., Yadav, A. K., et al. (2021). Effect of extreme climatic events on fish seed production in lower Brahmaputra Valley, Assam, India: Constraint analysis and adaptive strategies. Aquatic Ecosystem Health & Management, 24(3), 39–46.

    Article  Google Scholar 

  • Breazeale, E. L., McGeorge, W. T., & Breazeale, J. F. (1950). Moisture absorption by plants from an atmosphere of high humidity. Plant Physiology, 25(3), 413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djaman, K., Balde, A. B., et al. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River valley. Journal of Hydrology: Regional Studies, 3, 139–159. https://doi.org/10.1016/j.ejrh.2015.02.002

    Article  Google Scholar 

  • Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16(1), 33–45.

    Article  Google Scholar 

  • Fisher, D. K., & Pringle, H. C., III. (2013). Evaluation of alternative methods for estimating reference evapotranspiration. Agricultural Sciences, 4(8A), 51–60. https://doi.org/10.4236/as.2013.48A008

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1985a). Reference crop evapotranspiration from temperature. Applied Engineering Agriculture, 1(2), 96–99.

    Article  Google Scholar 

  • Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985b). Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(3), 265–275.

    Article  Google Scholar 

  • Isik, M., & Devadoss, S. (2006). An analysis of the impact of climate change on crop yields and yield variability. Applied Economics, 38(7), 835–844. https://doi.org/10.1080/00036840500193682

    Article  Google Scholar 

  • Kothawale, D. R., & Rupa Kumar, K. (2005). On the recent changes in surface temperature trends over India. Geophys Res Lett, 32(18), n/a-n/a. https://doi.org/10.1029/2005gl023528

  • Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26. https://doi.org/10.3389/fchem.2018.00026

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lu, J., Sun, G., McNulty, S. G., & Amatya, D. M. (2005). A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41(3), 621–633.

    Article  ADS  Google Scholar 

  • Michalopoulou, H., & Papaioannou, G. (1991). Reference crop evapotranspiration over Greece. Agricultural Water Management, 20, 209–221.

    Article  Google Scholar 

  • Mudi, S., & Das, J. P. (2022). Flood hazard mapping in Assam using Sentinel-1 SAR data. In P. K. Shit, H. R. Pourghasemi, G. S. Bhunia, P. Das, & A. Narsimha (Eds.), Geospatial technology for environmental hazards (Advances in geographic information science). Springer.

    Google Scholar 

  • Rajeevan, M., Bhate, J., Kale, J. D., & Lal, B. (2005). Development of a high resolution daily gridded rainfall data for the Indian region, India (Meteorological monograph climatology, 22/2005) (p. 26). Meteorological Department.

    Google Scholar 

  • Rajeevan, M., Bhate, J., Kale, K. D., & Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Current Science (Bangalore), 91, 296–306.

    Google Scholar 

  • Revadekar, J. V., Kothawale, D. R., & Rupa Kumar, K. (2009). Role of El Niño/La Niña in temperature extremes over India. International Journal of Climatology, 29(14), 2121–2129. https://doi.org/10.1002/joc.1851

    Article  ADS  Google Scholar 

  • Rojas, J. P., & Sheffield, R. E. (2013). Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in Northeast Louisiana. Journal of Irrigation and Drainage Engineering, 139(4), 285–292. https://doi.org/10.1061/(asce)ir.1943-4774.0000523

    Article  Google Scholar 

  • Saikia, A. (2009). NDVI variability in North East India. Scottish Geographical Journal, 125(2), 195–213. https://doi.org/10.1080/14702540903071113

    Article  Google Scholar 

  • Sepaskhah, A. R., & Razzaghi, F. (2009). Evaluation of the adjusted Thornthwaite and Hargreaves-Samani methods for estimation of daily evapotranspiration in a semi-arid region of Iran. Archives of Agronomy and Soil Science, 55(1), 51–66. https://doi.org/10.1080/03650340802383148

    Article  Google Scholar 

  • Srivastava, A. K., Rajeevan, M., & Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters. https://doi.org/10.1002/asl.232

  • Tabari, H. (2010). Evaluation of reference crop evapotranspiration equations in various climates. Water Resources Management, 24(10), 2311–2337. https://doi.org/10.1007/s11269-009-9553-8

    Article  Google Scholar 

  • Tabari, H., & Aghajanloo, M.-B. (2013). Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology, 33(2), 396–409. https://doi.org/10.1002/joc.3432

    Article  ADS  Google Scholar 

  • Thornthwaite, C. W. (1931). The climates of North America: according to a new classification. Geographical Review, 21(4), 633–655.

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    Article  Google Scholar 

  • Touch, V., Martin, R. J., Scott, J. F., Cowie, A., & Liu de, L. (2016). Climate change adaptation options in rainfed upland cropping systems in the wet tropics: A case study of smallholder farms in North-West Cambodia. Journal of Environmental Management, 182, 238–246. https://doi.org/10.1016/j.jenvman.2016.07.039

    Article  PubMed  Google Scholar 

  • Turc, L. (1961). Evaluation de besoins en eau d’irrigation, ET potentielle. Annals of Agronomy, 12, 13–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Deka Baruah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baruah, U.D., Saikia, A., Mili, N. (2023). Modelling of Reference Crop Evapotranspiration in Humid-Wet Tropical Region of India. In: Sharma, S., Kuniyal, J.C., Chand, P., Singh, P. (eds) Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-031-24659-3_17

Download citation

Publish with us

Policies and ethics