Skip to main content

Climate-Induced and Geophysical Disasters and Risk Reduction Management in Mountains Regions

  • Chapter
  • First Online:
Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya

Abstract

Mountains, being fragile, act as a vital repository for water and biodiversity. The Himalaya, in specific, the “roof of the world” is endowed with a magnificent and scenic view with temperate green forests, alpine meadows, agricultural fields, gorges, waterfalls, cascades of river valleys, and a human settlement in the unstable slopes or at the perennial streams of major rivers. The vulnerability of mountain ecosystems is being disproportionately influenced by climate change-induced disasters and is poorly understood as well. Cascading effect of temperature change can melt the snow and ice, thereby exhibiting a noticeable impact on the availability of water, biodiversity, boundary shift in ecosystem, agriculture, and on human well-being. Furthermore, several climate-induced disasters, like flash floods, mass movements, debris flows, and landslides, have occurred in the Himalayas. Specifically, this has happened a lot in the recent past, resulting in numerous deaths and property damage. This insecurity is due to the region’s unplanned, unscientific and unregulated practices as well as a massive rise in population. This underlines the necessity for a Mountain Specific Risk Management Framework (MSMRMF) and the incorporation of spatial specificities for risk reduction. The three dimensions of vulnerability, namely, adaptive capacity, exposure, and sensitivity, are greatly governed by livelihood strategies, access to water, food, and hygiene. The best available research on disaster risk reduction (DRR) and climate change adaptation must be incorporated in deciding disaster resilience. This chapter sheds light on various climate-induced and geological disasters in mountain regions, their impact, and risk management strategies. The significance of regional climate models, development of alternative technologies, people’s understanding regarding the social construction of risk, the role of local stakeholders, and enhancing the governance capacity and participation to manage the disaster risk is as well briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrha, H., & Adhana, K. (2019). Desa’a national forest reserve susceptibility to fire under climate change. Forest Science and Technology, 15(3), 140–146.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Chung, E. S., Wang, X. J., & Harun, S. B. (2019). Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. Journal of Hydrology, 570, 473–485.

    Article  ADS  Google Scholar 

  • Alam, M., & Regmi, B. R. (2004). Adverse impacts of climate change on development of Nepal: Integrating adaptation into policies and activities. Bangladesh Center for Advanced Studies.

    Google Scholar 

  • Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., & Kumari, A. (2016). Glacial lake outburst flood risk in Himachal Pradesh, India: An integrative and anticipatory approach considering current and future threats. Natural Hazards, 84(3), 1741–1763.

    Article  Google Scholar 

  • Ambrosi, C., & Scapozza, C. (2015). Improvements in 3-D digital mapping for geomorphological and quaternary geological cartography. Geographica Helvetica, 70(2), 121–133.

    Article  Google Scholar 

  • Aryal, D., Wang, L., Adhikari, T. R., Zhou, J., Li, X., Shrestha, M., Wang, Y., & Chen, D. (2020). A model-based flood hazard mapping on the southern slope of Himalaya. Water, 12(2), 540.

    Article  Google Scholar 

  • Aung, L. T., Martin, S. S., Wang, Y., Wei, S., Thant, M., Htay, K. N., Aung, H. M., Kyaw, T. Z., Min, S., Sithu, K., & Naing, T. (2019). A comprehensive assessment of ground motions from two 2016 intra-slab earthquakes in Myanmar. Tectonophysics, 765, 146–160.

    Article  ADS  Google Scholar 

  • Awasthi, R. P., & Owen, J. S. (2020). Observed climate extreme in Nepal. The Geographic Base, 7, 1–14.

    Article  Google Scholar 

  • Azadi, M., Northey, S. A., Ali, S. H., & Edraki, M. (2020). Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nature Geoscience, 13(2), 100–104.

    Article  CAS  ADS  Google Scholar 

  • Bali, B. S., Wani, A. A., Bhat, G. R., & Mir, S. A. (2021). GPR investigation of mining induced subsidence and its effects on surface structures: A case study of Srinagar City, J & K, India, NW Himalayas. Journal of the Geological Society of India, 97(7), 751–759.

    Article  Google Scholar 

  • Banerjee, A., & Dimri, A. P. (2019). Comparative analysis of two rainfall retrieval algorithms during extreme rainfall event: A case study on cloudburst, 2010 over Ladakh (Leh), Jammu and Kashmir. Natural Hazards, 97(3), 1357–1374.

    Article  Google Scholar 

  • Barkat, A., Ali, A., Siddique, N., Alam, A., Wasim, M., & Iqbal, T. (2017). Radon as an earthquake precursor in and around northern Pakistan: A case study. Geochemical Journal, 51(4), 337–346.

    Article  CAS  ADS  Google Scholar 

  • Bhatt, C. M., Rao, G. S., & Jangam, S. (2020). Detection of urban flood inundation using RISAT-1 SAR images: A case study of Srinagar, Jammu and Kashmir (North India) floods of September 2014. Modeling Earth Systems and Environment, 6(1), 429–438.

    Article  Google Scholar 

  • Bilham, R. (2019). Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential. Geological Society, London, Special Publications, 483(1), 423–482.

    Article  ADS  Google Scholar 

  • Biswas, S., Mehta, M., & Ghosh, A. (2018, May). Study of aerosol distribution in the vertical air column of atmosphere during Uttarakhand forest fires 2016. In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 98–102). IEEE.

    Google Scholar 

  • Bradley, B. A., Burks, L. S., & Baker, J. W. (2015). Ground motion selection for simulation-based seismic hazard and structural reliability assessment. Earthquake Engineering and Structural Dynamics, 44(13), 2321–2340.

    Article  Google Scholar 

  • Busayo, E. T., Kalumba, A. M., Afuye, G. A., Ekundayo, O. Y., & Orimoloye, I. R. (2020). Assessment of the Sendai framework for disaster risk reduction studies since 2015. International Journal of Disaster Risk Reduction, 50, 101906.

    Article  Google Scholar 

  • Calvello, M., Peduto, D., & Arena, L. (2017). Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides. Landslides, 14(2), 473–489.

    Article  Google Scholar 

  • Cardona, A., & Darío, O. (2009). La gestión financiera del riesgo de desastres: Instrumentos financieros de retención y transferencia para la Comunidad Andina. In La gestión financiera del riesgo de desastres: Instrumentos financieros de retención y transferencia para la Comunidad Andina (p. 288).

    Google Scholar 

  • Carrivick, J. L., & Tweed, F. S. (2016). A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change, 144, 1–16.

    Article  ADS  Google Scholar 

  • Chakrabarti, B. K. (2016). Lithotectonic Subdivisions of the Himalaya. In Geology of the Himalayan Belt; Chakrabarti, B.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–9.

    Google Scholar 

  • Chettri, N. A. K. U. L., & Sharma, E. K. L. A. B. Y. A. (2016). Reconciling the mountain biodiversity conservation and human wellbeing: Drivers of biodiversity loss and new approaches in the Hindu-Kush Himalayas. Proceedings of the Indian National Science Academy, 82, 53–73.

    Article  Google Scholar 

  • Chettri, N., Sharma, E., Shakya, B., & Bajracharya, B. (2007). Developing forested conservation corridors in the Kangchenjunga landscape, Eastern Himalaya. Mountain Research and Development, 27(3), 211–214.

    Article  Google Scholar 

  • Chopra, S., Kumar, V., Suthar, A., & Kumar, P. (2012). Modeling of strong ground motions for 1991 Uttarkashi, 1999 Chamoli earthquakes, and a hypothetical great earthquake in Garhwal–Kumaun Himalaya. Natural Hazards, 64(2), 1141–1159.

    Article  Google Scholar 

  • Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913–919.

    Google Scholar 

  • Dahal, P., Shrestha, N. S., Shrestha, M. L., Krakauer, N. Y., Panthi, J., Pradhanang, S. M., Jha, A., & Lakhankar, T. (2016). Drought risk assessment in Central Nepal: Temporal and spatial analysis. Natural Hazards, 80(3), 1913–1932.

    Article  Google Scholar 

  • Dalezios, N. R., Dunkel, Z., & Eslamian, S. (2017). Meteorological drought indices: Definitions. In Handbook of drought and water scarcity (pp. 27–44). CRC Press.

    Google Scholar 

  • Das, B., Paul, A., Bordoloi, R., Tripathi, O. P., & Pandey, P. K. (2018). Soil erosion risk assessment of hilly terrain through integrated approach of RUSLE and geospatial technology: A case study of Tirap District, Arunachal Pradesh. Modeling Earth Systems and Environment, 4(1), 373–381.

    Article  Google Scholar 

  • Das, P. K., Podder, U., Das, R., Kamalakannan, C., Rao, G. S., Bandyopadhyay, S., & Raj, U. (2020). Quantification of heat wave occurrences over the Indian region using long-term (1979–2017) daily gridded (0.5°× 0.5°) temperature data – A combined heat wave index approach. Theoretical and Applied Climatology, 142(1), 497–511.

    Article  ADS  Google Scholar 

  • Devrani, R., Singh, V., Mudd, S. M., & Sinclair, H. D. (2015). Prediction of flash flood hazard impact from Himalayan river profiles. Geophysical Research Letters, 42(14), 5888–5894.

    Article  ADS  Google Scholar 

  • Dhimal, M., Bhandari, D., Dhimal, M. L., Kafle, N., Pyakurel, P., Mahotra, N., et al. (2021). Impact of climate change on health and well-being of people in Hindu-Kush-Himalayan (HKH) region – A review. Frontiers in Physiology, 12, 1139.

    Article  Google Scholar 

  • Dikshit, A., Satyam, D. N., & Towhata, I. (2018). Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Natural Hazards, 94(2), 727–741.

    Article  Google Scholar 

  • Dikshit, A., Satyam, N., & Pradhan, B. (2019). Estimation of rainfall-induced landslides using the TRIGRS model. Earth Systems and Environment, 3(3), 575–584.

    Article  Google Scholar 

  • Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A. M. (2020). Rainfall induced landslide studies in Indian Himalayan region: A critical review. Applied Sciences, 10(7), 2466.

    Article  CAS  Google Scholar 

  • Dubey, S., & Goyal, M. K. (2020). Glacial lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas. Water Resources Research, 56(4), e2019WR026533.

    Article  ADS  Google Scholar 

  • Dubey, C. S., Shukla, D. P., Ningreichon, A. S., & Usham, A. L. (2013). Orographic control of the Kedarnath disaster. Current Science, 105(11), 1474–1476.

    Google Scholar 

  • Dulal, K. N., Takeuchi, K., & Ishidaira, H. (2007). Evaluation of the influence of uncertainty in rainfall and discharge data on hydrological modeling. Proceedings of Hydraulic Engineering, 51, 31–36.

    Article  Google Scholar 

  • ECHO 2021. European Commission Mobilises the Civil Protection Mechanism for Victims of the Earthquake and Tsunami in South Asia, Press, Brussels, OCTOBER 2021. ECHO, Oct (2021)-https://reliefweb.int/node/3784525

  • Emmer, A., & Cochachin, A. (2013). The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas. AUC Geographica, 48(2), 5–15.

    Article  Google Scholar 

  • Falátková, K. (2016). Temporal analysis of GLOFs in high-mountain regions of Asia and assessment of their causes. AUC Geographica, 51(2), 145–154.

    Article  Google Scholar 

  • Fearnside, P. M. (2019). Greenhouse gas emissions from land-use change in Brazil’s Amazon region. In Global climate change and tropical ecosystems (pp. 231–249, 438). CRC Press.

    Google Scholar 

  • Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16(3), 253–267.

    Article  Google Scholar 

  • Forsythe, N., Fowler, H. J., Li, X. F., Blenkinsop, S., & Pritchard, D. (2017). Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nature Climate Change, 7(9), 664–670.

    Article  ADS  Google Scholar 

  • Freeman, S. A. (1975). Evaluations of existing buildings for seismic risk – A case study of Puget Sound Naval Shipyard. In Proceedings of 1st U.S. National Conference on Earthquake Engineering, Bremerton, Washington, 1975 (pp. 113–122).

    Google Scholar 

  • Gahalaut, V. K., & Kundu, B. (2016). The 4 January 2016 Manipur earthquake in the Indo-Burmese wedge, an intra-slab event. Geomatics, Natural Hazards and Risk, 7(5), 1506–1512.

    Article  Google Scholar 

  • Geographical Survey of India (GSI). (2020). State resource map series: Landslides 2020, India (p. 1). Published by Geological Survey of India-Explanatory Note.

    Google Scholar 

  • Ghosh, T., Bhowmik, S., Jaiswal, P., Ghosh, S., & Kumar, D. (2020). Generating substantially complete landslide inventory using multiple data sources: A case study in Northwest Himalayas, India. Journal of the Geological Society of India, 95(1), 45–58.

    Article  Google Scholar 

  • Gill, J. C., & Malamud, B. D. (2016). Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth System Dynamics, 7(3), 659–679.

    Article  ADS  Google Scholar 

  • Gruber, S., & Haeberli, W. (2007). Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. Journal of Geophysical Research - Earth Surface, 112(F2). https://doi.org/10.1029/2006JF000547

  • Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M. O., Stumm, D., Wester, P., Zhang, Y., & Zhao, L. (2017). Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. The Cryosphere, 11(1), 81–99.

    Article  ADS  Google Scholar 

  • Gupta, A. T. (2018). A software system proposing the processing of crowdsourced data to monitor a flood event: An AI approach. Open Water Journal, 5(2), 2.

    Google Scholar 

  • Gupta, V., Paul, A., Kumar, S., & Dash, B. (2021). Spatial distribution of landslides vis-à-vis epicentral distribution of earthquakes in the vicinity of the Main Central Thrust zone, Uttarakhand Himalaya, India. Current Science, 120(12), 1927–1932.

    Article  Google Scholar 

  • Gurung, D. R., Maharjan, S. B., Shrestha, A. B., Shrestha, M. S., Bajracharya, S. R., & Murthy, M. S. R. (2017a). Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. International Journal of Climatology, 37(10), 3873–3882.

    Article  ADS  Google Scholar 

  • Gurung, D. R., Khanal, N. R., Bajracharya, S. R., Tsering, K., Joshi, S., Tshering, P., Chhetri, L. K., Lotay, Y., & Penjor, T. (2017b). Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: Cause and impact. Geoenvironmental Disasters, 4(1), 1–13.

    Article  Google Scholar 

  • Halder, L., Dutta, S. C., Sharma, R. P., & Bhattacharya, S. (2021). Lessons learnt from post-earthquake damage study of Northeast India and Nepal during last ten years: 2021 Assam earthquake, 2020 Mizoram earthquake, 2017 Ambasa earthquake, 2016 Manipur earthquake, 2015 Nepal earthquake, and 2011 Sikkim earthquake. Soil Dynamics and Earthquake Engineering, 151, 106990.

    Article  Google Scholar 

  • Han, S. K., & Han, H. S. (2020). Productivity and cost of whole-tree and tree-length harvesting in fuel reduction thinning treatments using cable yarding systems. Forest Science and Technology, 16(1), 41–48.

    Article  Google Scholar 

  • Hanson, C., & Ranganathan, J. (2017). Insider: Why burning trees harms the environment (p. 6). World Resources Institute.

    Google Scholar 

  • Haritashya, U. K., Singh, P., Kumar, N., & Singh, Y. (2006). Hydrological importance of an unusual hazard in a mountainous basin: Flood and landslide. Hydrological Processes: An International Journal, 20(14), 3147–3154.

    Article  ADS  Google Scholar 

  • Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts, R. A., et al. (2018). Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere, 12, 1195. https://doi.org/10.5194/tc-12-1195-2018

    Article  ADS  Google Scholar 

  • Hart, R., Salick, J., Ranjitkar, S., & Xu, J. (2014). Herbarium specimens show contrasting phenological responses to Himalayan climate. Proceedings of the National Academy of Sciences, 111(29), 10615–10619.

    Article  CAS  ADS  Google Scholar 

  • Hatai, L. D., & Sen, C. (2008). An economic analysis of agricultural sustainability in Orissa. Agricultural Economics Research Review, 21(347–2016-16706), 273–282.

    Google Scholar 

  • Hock, R., Rasul, G., Adler, C., Caceres, S., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., & Milner, A. (2019). Chapter 2: High mountain areas – Special report on the ocean and cryosphere in a changing climate. In IPCC special report on the ocean and cryosphere in a changing climate.

    Google Scholar 

  • Hong, H., Pradhan, B., Xu, C., & Bui, D. T. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266–281.

    Article  Google Scholar 

  • Hua, O. (2009). The Himalayas-water storage under threat. ICIMOD, Sustainable Mountain Development, 56, 3–5.

    ADS  Google Scholar 

  • Huang, G., Wang, J., Chen, C. H. E. N., Guo, C., & Zhu, B. (2017). System resilience enhancement: Smart grid and beyond. Frontiers of Engineering Management, 4(3), 271–282.

    Article  Google Scholar 

  • Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2), 135–140.

    Article  ADS  Google Scholar 

  • Hussain, A., Cao, J., Hussain, I., Begum, S., Akhtar, M., Wu, X., Guan, Y., & Zhou, J. (2021). Observed trends and variability of temperature and precipitation and their global teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. Atmosphere, 12(8), 973.

    Article  ADS  Google Scholar 

  • IPCC. (2021). Summary for policymakers. In Climate change 2021: The physical science basis. Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge University Press.

    Google Scholar 

  • Islam, A. S., Jameel, M., Rahman, M. A., & Jumaat, M. Z. (2011). Earthquake time history for Dhaka, Bangladesh as competent seismic record. International Journal of Physical Sciences, 6(16), 3923–3928.

    Google Scholar 

  • Kamp, U., Growley, B. J., Khattak, G. A., & Owen, L. A. (2008). GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101(4), 631–642.

    Article  ADS  Google Scholar 

  • Kanga, S., Kumar, S., & Singh, S. K. (2017). Climate induced variation in forest fire using Remote Sensing and GIS in Bilaspur District of Himachal Pradesh. International Journal of Engineering and Computer Science, 6(6), 21695–21702.

    Google Scholar 

  • Kanna, N., Gupta, S., & Prakasam, K. S. (2018). Micro-seismicity and seismotectonic study in Western Himalaya–Ladakh-Karakoram using local broadband seismic data. Tectonophysics, 726, 100–109.

    Article  ADS  Google Scholar 

  • Karmokar, S., & De, M. (2020). Flash flood risk assessment for drainage basins in the Himalayan foreland of Jalpaiguri and Darjeeling Districts, West Bengal. Modeling Earth Systems and Environment, 6(4), 2263–2289.

    Article  Google Scholar 

  • Kaur, P., Joshi, J. C., & Aggarwal, P. (2021). A multi-model decision support system (MM-DSS) for avalanche hazard prediction over North-West Himalaya. Natural Hazards, 1–23. https://doi.org/10.1007/s11069-021-04958-5

  • Keshavarz, M., Karami, E., & Vanclay, F. (2013). The social experience of drought in rural Iran. Land Use Policy, 30(1), 120–129.

    Article  Google Scholar 

  • Khadka, N., Zhang, G., & Thakuri, S. (2018). Glacial lakes in the Nepal Himalaya: Inventory and decadal dynamics (1977–2017). Remote Sensing, 10(12), 1913.

    Article  ADS  Google Scholar 

  • Khan, S., & Qureshi, S. F. (2019). Climate change and hazards risk management, community capability, resilience and vulnerability in Swat, Shangla, and Kohistan District, Northwest Pakistan. International Journal of Economic and Environmental Geology, 10(4), 69–77.

    Article  Google Scholar 

  • Khan, I., Waqas, T., & Ullah, S. (2020). Precipitation variability and its trend detection for monitoring of drought hazard in northern mountainous region of Pakistan. Arabian Journal of Geosciences, 13(15), 1–18.

    Article  CAS  Google Scholar 

  • Khanduri, S. (2020). Cloudbursts over Indian sub-continent of Uttarakhand Himalaya: A traditional habitation input from Bansoli, District-Chamoli, India. International Journal of Earth Sciences Knowledge and Applications, 2(2), 48–63.

    Google Scholar 

  • Khanduri, S., Sajwan, K. S., Rawat, A., Dhyani, C., & Kapoor, S. (2018). Disaster in Rudraprayag District of Uttarakhand Himalaya: A special emphasis on geomorphic changes and slope instability. Journal of Geography and Natural Disasters, 8(218), 2167–0587.

    Google Scholar 

  • Khatiwada, K. R., & Pandey, V. P. (2019). Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali River Basin. Weather and Climate Extremes, 26, 100239.

    Article  Google Scholar 

  • Kirschbaum, D., Watson, C. S., Rounce, D. R., Shugar, D. H., Kargel, J. S., Haritashya, U. K., Amatya, P., Shean, D., Anderson, E. R., & Jo, M. (2019). The state of remote sensing capabilities of cascading hazards over High Mountain Asia. Frontiers in Earth Science, 7, 197.

    Article  ADS  Google Scholar 

  • Komori, D., Nakamura, S., Kiguchi, M., Nishijima, A., Yamazaki, D., Suzuki, S., et al. (2012). Characteristics of the 2011 Chao Phraya River flood in Central Thailand. Hydrological Research Letters, 6, 41–46.

    Article  ADS  Google Scholar 

  • Kotru, R. K., Shakya, B., Joshi, S., Gurung, J., Ali, G., Amatya, S., & Pant, B. (2020). Biodiversity conservation and management in the Hindu Kush Himalayan Region: Are transboundary landscapes a promising solution? Mountain Research and Development, 40(2), A15.

    Article  Google Scholar 

  • Krishnan, R., Sabin, T. P., Madhura, R. K., Vellore, R. K., Mujumdar, M., Sanjay, J., Nayak, S., & Rajeevan, M. (2019). Non-monsoonal precipitation response over the Western Himalayas to climate change. Climate Dynamics, 52(7), 4091–4109.

    Article  ADS  Google Scholar 

  • Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of climate change over the Indian region: A report of the Ministry of Earth Sciences (MOES), Government of India (p. 226). Springer.

    Book  Google Scholar 

  • Kumar, S., & Gupta, V. (2021). Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India. Natural Hazards, 1–28.

    Google Scholar 

  • Kumar, M., Rana, S., Pant, P. D., & Patel, R. C. (2017). Slope stability analysis of Balia Nala landslide, Kumaun Lesser Himalaya, Nainital, Uttarakhand, India. Journal of Rock Mechanics and Geotechnical Engineering, 9(1), 150–158.

    Article  Google Scholar 

  • Kumar, A., Gupta, A. K., Bhambri, R., Verma, A., Tiwari, S. K., & Asthana, A. K. L. (2018). Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Polar Science, 18, 5–20.

    Article  ADS  Google Scholar 

  • Kumar, A., Negi, H. S., Kumar, K., Shekhar, C., & Kanda, N. (2019). Quantifying mass balance of East-Karakoram glaciers using geodetic technique. Polar Science, 19, 24–39.

    Article  ADS  Google Scholar 

  • Kumar, S., Gupta, V., Kumar, P., & Sundriyal, Y. P. (2021). Coseismic landslide hazard assessment for the future scenario earthquakes in the Kumaun Himalaya, India. Bulletin of Engineering Geology and the Environment, 1–17.

    Google Scholar 

  • Larsen, S. Ø., Salberg, A. B., & Solberg, R. (2013). Automatic avalanche mapping using texture classification of Abrha, H. and Adhana, K., 2019. Desa’a national forest reserve susceptibility to fire under climate change. Forest Science and Technology, 15(3), 140–146.

    Google Scholar 

  • Latestly. (2021). Forest fire in Uttarakhand leaves 71 hectares of land destroyed; PIB says wildfire incidents dropped this year, shares graph. https://www.latestly.com/india/news/forest-fire-in-uttarakhand-leaves-71-hectares-of-land-destroyed-pib-says-wildfire-incidents-dropped-this-year-shares-graph-1780127.html

  • Linsbauer, A., Frey, H., Haeberli, W., Machguth, H., Azam, M. F., & Allen, S. (2016). Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya – Karakoram region. Annals of Glaciology, 57(71), 119–130.

    Article  ADS  Google Scholar 

  • Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14), 1729–1742.

    Article  ADS  Google Scholar 

  • Liu, J., & Rasul, G. (2007). Climate change, the Himalayan mountains, and ICIMOD. Sustainable Mountain Development, 53, 11–14.

    Google Scholar 

  • Mahmood, I., Qureshi, S. N., Tariq, S., Atique, L., & Iqbal, M. F. (2015). Analysis of landslides triggered by October 2005, Kashmir Earthquake. PLoS Currents, 7. https://doi.org/10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99

  • Maikhuri, R. K., Nautiyal, A., Jha, N. K., Rawat, L. S., Maletha, A., Phondani, P. C., Bahuguna, Y. M., & Bhatt, G. C. (2017). Socio-ecological vulnerability: Assessment and coping strategy to environmental disaster in Kedarnath valley, Uttarakhand, Indian Himalayan Region. International Journal of Disaster Risk Reduction, 25, 111–124.

    Article  Google Scholar 

  • Mal, S., Allen, S. K., Frey, H., Huggel, C., & Dimri, A. P. (2021). Sectorwise assessment of glacial lake outburst flood danger in the Indian Himalayan Region. Mountain Research and Development, 41(1), R1.

    Article  Google Scholar 

  • Mandal, S., & Maiti, R. (2015). Semi-quantitative approaches for landslide assessment and prediction (pp. 57–93). Springer.

    Google Scholar 

  • Martinec, J. (1975). Snowmelt-runoff model for stream flow forecasts. Hydrology Research, 6(3), 145–154.

    Article  Google Scholar 

  • Maskey, S., Uhlenbrook, S., & Ojha, S. (2011). An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Climatic Change, 108(1), 391–400.

    Article  ADS  Google Scholar 

  • Maurer, J. M., Schaefer, J. M., Rupper, S., & Corley, A. (2019). Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances, 5(6), eaav7266.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • McClung, D. M. (2016). Avalanche character and fatalities in the high mountains of Asia. Annals of Glaciology, 57(71), 114–118.

    Article  ADS  Google Scholar 

  • Meena, S. R., & Mishra, B. K. (2018, December). Landslide risk assessment of Kullu valley using frequency ratio methods and its controlling mechanism, Himachal Himalayas, India. In Proceedings of the INQUIMUS 2018 workshop: Methods and tools to assess multi-hazard risk, vulnerability and resilience, Venice, Italy (pp. 3–5).

    Google Scholar 

  • Meraj, G., Romshoo, S. A., Yousuf, A. R., Altaf, S., & Altaf, F. (2015). Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Natural Hazards, 77(1), 153–175.

    Article  Google Scholar 

  • Mergili, M., Sattar, A., Carrivick, J., Emmer, A., Mandli, K. T., Jacquemart, M., Watson, S., Westoby, M., Clague, J. J., Haritashya, U. K., & Shugar, D. H. (2021, April). Exploring the flow evolution of the Chamoli event (Uttarakhand, India) of 7 February 2021: From geomorphological mapping to multi-model computer simulations. In EGU General Assembly Conference Abstracts (pp. EGU21–16591).

    Google Scholar 

  • Mir, A. Y., Yaqoob, U., Hassan, M., Bashir, F., Zanit, S. B., Haq, S. M., & Bussmann, R. W. (2021). Ethnopharmacology and phenology of high-altitude medicinal plants in Kashmir, Northern Himalaya. Ethnobotany Research and Applications, 22, 1–15.

    Article  Google Scholar 

  • Mirza, M. (2007). Climate change, adaptation and adaptative governance in the water sector in South Asia. Adaptation and Impacts Research Division (AIRD), Department of Physical and Environmental Sciences, University of Toronto.

    Google Scholar 

  • Mittal, H., Wu, Y. M., Lin, T. L., Legendre, C. P., Gupta, S., & Yang, B. M. (2019). Time-dependent shake map for Uttarakhand Himalayas, India, using recorded earthquakes. Acta Geophysica, 67(3), 753–763.

    Article  ADS  Google Scholar 

  • Mondal, S., & Mandal, S. (2018). RS & GIS-based landslide susceptibility mapping of the Balason River basin, Darjeeling Himalaya, using logistic regression (LR) model. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1), 29–44.

    Google Scholar 

  • Mondal, S., & Mandal, S. (2020). Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India. Geocarto International, 35(8), 818–856.

    Article  Google Scholar 

  • Murgese, D., Marchisio, D., Notaro, P., & Vigna, R. (2015). Broad gauge rail link between Sivok in West Bengal and Rangpo in the state of Sikkim with future connectivity to Gangtok (Sikkim) – Shallow-landslide susceptibility map. In Engineering geology for society and territory – Volume 2 (pp. 979–983). Springer.

    Google Scholar 

  • Murthy, K. K., Sinha, S. K., Kaul, R., & Vaidyanathan, S. (2019). A fine-scale state-space model to understand drivers of forest fires in the Himalayan foothills. Forest Ecology and Management, 432, 902–911.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Narama, C., Daiyrov, M., Duishonakunov, M., Tadono, T., Sato, H., Kääb, A., Ukita, J., & Abdrakhmatov, K. (2018). Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia. Natural Hazards and Earth System Sciences, 18(4), 983–995.

    Article  ADS  Google Scholar 

  • Naveena, N., Satyanarayana, G. C., Rao, K. K., Umakanth, N., & Srinivas, D. (2021). Heat wave characteristics over India during ENSO events. Journal of Earth System Science, 130(3), 1–16.

    Article  Google Scholar 

  • Nepal, S., Pradhananga, S., Shrestha, N. K., Kralisch, S., Shrestha, J. P., & Fink, M. (2021). Space–time variability in soil moisture droughts in the Himalayan region. Hydrology and Earth System Sciences, 25(4), 1761–1783.

    Article  ADS  Google Scholar 

  • Nhu, V. H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., et al. (2020). Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. International Journal of Environmental Research and Public Health, 17(8), 2749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nibanupudi, H. K., & Shaw, R. (Eds.). (2015). Mountain hazards and disaster risk reduction. Springer Japan.

    Google Scholar 

  • Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., & Liu, S. (2018). An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology, 308, 91–106.

    Article  ADS  Google Scholar 

  • Nikravesh, G., Aghababaei, M., Nazari-Sharabian, M., & Karakouzian, M. (2020). Drought frequency analysis based on the development of a two-variate standardized index (rainfall-runoff). Water, 12(9), 2599.

    Article  Google Scholar 

  • Noetzli, J., Christiansen, H. H., Isaksen, K., Smith, S., Zhao, L., & Streletskiy, D. A. (2020). Permafrost thermal state. Bulletin of the American Meteorological Society, 101, 34–36.

    Google Scholar 

  • Nokendangba Chang, C., Ezung, M., Apon, M., Walling, T., & Thong, G. T. (2021). Assessment of landslides along NH 29 in the Kevüza Area, Kohima, Nagaland. Indian Geotechnical Journal, 51(4), 841–860.

    Article  Google Scholar 

  • Onagh, M., Kumra, V. K., & Rai, P. K. (2012). Landslide susceptibility mapping in a part of Uttarkashi district (India) by multiple linear regression method. International Journal of Geology, Earth and Environmental Sciences, 2(2), 102–120.

    Google Scholar 

  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., et al. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.

    Google Scholar 

  • Paik, S. (2018). Impact of natural disasters on schools in India: Current scenario in terms of policies and practices. In Disaster risk governance in India and cross cutting issues (pp. 295–312). Springer.

    Google Scholar 

  • Panday, S., & Dong, J. J. (2021). Topographical features of rainfall-triggered landslides in Mon State, Myanmar, August 2019: Spatial distribution heterogeneity and uncommon large relative heights. Landslides, 18(12), 1–15.

    Article  Google Scholar 

  • Pandey, V. K., Mishra, A., & Mishra, S. S. (2015). Climate change and mitigation measures for the hydrometerological disaster in Himachal Pradesh, India-in light of dams. International Journal of Scientific & Technology Research, 4(01), 267.

    Google Scholar 

  • Pandey, P., Chauhan, P., Bhatt, C. M., Thakur, P. K., Kannaujia, S., Dhote, P. R., Roy, A., Kumar, S., Chopra, S., Bhardwaj, A., & Aggrawal, S. P. (2021). Cause and process mechanism of rockslide triggered flood event in Rishiganga and Dhauliganga River Valleys, Chamoli, Uttarakhand, India using satellite remote sensing and in situ observations. Journal of the Indian Society of Remote Sensing, 49(5), 1011–1024.

    Article  Google Scholar 

  • Pandit, M. K., Manish, K., & Koh, L. P. (2014). Dancing on the roof of the world: Ecological transformation of the Himalayan landscape. Bioscience, 64(11), 980–992.

    Article  Google Scholar 

  • Pangali Sharma, T. P., Zhang, J., Khanal, N. R., Prodhan, F. A., Paudel, B., Shi, L., & Nepal, N. (2020). Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sensing, 12(12), 1951.

    Article  ADS  Google Scholar 

  • Papadimitriou, F. (2012). Modelling landscape complexity for land use management in Rio de Janeiro, Brazil. Land Use Policy, 29(4), 855–861.

    Article  Google Scholar 

  • Papazachos, B. C. (1989). A time-predictable model for earthquake generation in Greece. Bulletin of the Seismological Society of America, 79(1), 77–84.

    Google Scholar 

  • Parkash, S. (2015). Some socio-economically significant landslides in Uttarakhand Himalaya: events, consequences and lessons learnt. Mountain hazards and disaster risk reduction, 211–232.

    Google Scholar 

  • Parvaze, S., Khan, J. N., Kumar, R., & Allaie, S. P. (2021). Temporal flood forecasting for trans-boundary Jhelum River of Greater Himalayas. Theoretical and Applied Climatology, 144(1), 493–506.

    Article  ADS  Google Scholar 

  • Paudel, B., Zhang, Y., Yan, J., Rai, R., Li, L., Wu, X., et al. (2020). Farmers’ understanding of climate change in Nepal Himalayas: Important determinants and implications for developing adaptation strategies. Climatic Change, 158(3), 485–502.

    Article  ADS  Google Scholar 

  • Pei, S. (1995). Banking on biodiversity: Report on the regional consultations on biodiversity assessment in the Hindu Kush Himalaya. ICIMOD.

    Google Scholar 

  • Polykretis, C., Chalkias, C., & Ferentinou, M. (2019). Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bulletin of Engineering Geology and the Environment, 78(2), 1173–1187.

    Article  Google Scholar 

  • Prasad, A. S., Pandey, B. W., Leimgruber, W., & Kunwar, R. M. (2016). Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenvironmental Disasters, 3(1), 1–17.

    Article  Google Scholar 

  • Prati, C., Ferretti, A., & Perissin, D. (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. Journal of Geodynamics, 49(3–4), 161–170.

    Article  ADS  Google Scholar 

  • Raetzo, H., & Loup, B. (2016). Schutz vor Massenbewegungsgefahren: Vollzugshilfe für das Gefahrenmanagement von Rutschungen, Steinschlag und Hangmuren. Schweizerische Eidgenossenschaft, Bundesamt für Umwelt BAFU.

    Google Scholar 

  • Ram, P., Gupta, V., Devi, M., & Vishwakarma, N. (2020). Landslide susceptibility mapping using bivariate statistical method for the hilly township of Mussoorie and its surrounding areas, Uttarakhand Himalaya. Journal of Earth System Science, 129(1), 1–18.

    Article  Google Scholar 

  • Ramanathan, K., Vasudevan, N., & Drisya, R. (2020). Analysis of the 1997 Chandmari Landslide, India, and technology-enabled risk reduction. In 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) (pp. 1015–1019). IEEE.

    Google Scholar 

  • Ramkrishnan, R., Sreevalsa, K., & Sitharam, T. G. (2021). Development of new ground motion prediction equation for the North and Central Himalayas using recorded strong motion data. Journal of Earthquake Engineering, 25(10), 1903–1926.

    Article  Google Scholar 

  • Ramola, R. C., Prasad, Y., Prasad, G., Kumar, S., & Choubey, V. M. (2008). Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. Applied Radiation and Isotopes, 66(10), 1523–1530.

    Article  CAS  PubMed  Google Scholar 

  • Rautela, P. (2005). Indigenous technical knowledge inputs for effective disaster management in the fragile Himalayan ecosystem. Disaster Prevention and Management: An International Journal, 14(2), 233–241.

    Google Scholar 

  • Rathore, B. P., Singh, S. K., Jani, P., Bahuguna, I. M., Brahmbhatt, R., Rajawat, A. S., et al. (2018). Monitoring of snow cover variability in Chenab Basin using IRS AWiFS sensor. Journal of the Indian Society of Remote Sensing, 46(9), 1497–1506.

    Article  Google Scholar 

  • Rees, H. G., & Collins, D. N. (2006). Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes: An International Journal, 20(10), 2157–2169.

    Article  ADS  Google Scholar 

  • Ren, Y. Y., Ren, G. Y., Sun, X. B., Shrestha, A. B., You, Q. L., Zhan, Y. J., et al. (2017). Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Advances in Climate Change Research, 8(3), 148–156.

    Article  Google Scholar 

  • Rounce, D. R., Watson, C. S., & McKinney, D. C. (2017). Identification of hazard and risk for glacial lakes in the Nepal Himalaya using satellite imagery from 2000–2015. Remote Sensing, 9(7), 654.

    Article  ADS  Google Scholar 

  • Rounce, D. R., Hock, R., & Shean, D. E. (2020). Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM). Frontiers in Earth Science, 7, 331.

    Article  ADS  Google Scholar 

  • Roy, A. B., & Purohit, R. (2018). The Himalayas: Evolution through collision. In Indian shield; Precambrian evolution and phanerozoic reconstitution (pp. 311–327). Elsevier.

    Google Scholar 

  • Roy, A., Chatterjee, A., Ghosh, A., Das, S. K., Ghosh, S. K., & Raha, S. (2019a). Below-cloud scavenging of size-segregated aerosols and its effect on rainwater acidity and nutrient deposition: A long-term (2009–2018) and real-time observation over eastern Himalaya. Science of the Total Environment, 674, 223–233.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Roy, J., Saha, S., Arabameri, A., Blaschke, T., & Bui, D. T. (2019b). A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sensing, 11(23), 2866.

    Article  ADS  Google Scholar 

  • Roy, S., Bose, A., & Chowdhury, I. R. (2021). Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill, India. Arabian Journal of Geosciences, 14(11), 1–25.

    Article  Google Scholar 

  • Rupa, T. (2015). Geomorphological study with special reference to landslide in the adjoining areas of National Highway No. 52-A (Banderdewa to Itanagar), Arunachal Pradesh. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 9(4), 20–26.

    Google Scholar 

  • Sachdeva, S., & Kumar, B. (2021). Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods. Ecological Informatics, 101498. https://doi.org/10.46717/igj.55.2C.10ms-2022-08-23

  • Sakai, S., Poudel, R., Asari, M., & Kirikawa, T. (2019). Disaster waste management after the 2016 Kumamoto Earthquake: A mini-review of earthquake waste management and the Kumamoto experience. Waste Management & Research, 37(3), 247–260.

    Article  Google Scholar 

  • Sakurai, M., & Murayama, Y. (2019). Information technologies and disaster management – Benefits and issues. Progress in Disaster Science, 2, 100012.

    Article  Google Scholar 

  • Sannigrahi, S., Pilla, F., Basu, B., Basu, A. S., Sarkar, K., Chakraborti, S., Joshi, P. K., Zhang, Q., Wang, Y., Bhatt, S., & Bhatt, A. (2020). Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Science of the Total Environment, 725, 138331.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sarkar, S., Kanungo, D. P., & Sharma, S. (2015). Landslide hazard assessment in the upper Alaknanda valley of Indian Himalayas. Geomatics, Natural Hazards and Risk, 6(4), 308–325.

    Article  Google Scholar 

  • Sastry, R. G., & Mondal, S. K. (2013). Geophysical characterization of the Salna sinking zone, Garhwal Himalaya, India. Surveys in Geophysics, 34(1), 89–119.

    Article  ADS  Google Scholar 

  • Sati, V. P. (2020). Increasing events of disasters. In Himalaya on the threshold of change (pp. 79–99). Springer.

    Google Scholar 

  • Sati, V. P., & Litt, D. (2011, September). Climate disasters in the Himalaya: Risk and vulnerability. In International conference on climate change and natural hazards in mountain areas, Dushanbe Sept (pp. 19–21).

    Google Scholar 

  • Sekhri, S., Kumar, P., Fürst, C., & Pandey, R. (2020). Mountain specific multi-hazard risk management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate change risk in the Indian Himalayan Region. Ecological Indicators, 118, 106700.

    Article  Google Scholar 

  • Sharma, S., Kuniyal, J. C., & Sharma, J. C. (2007). Assessment of man-made and natural hazards in the surroundings of hydropower projects under construction in the beas valley of northwestern Himalaya. Journal of Mountain Science, 4, 221–236.

    Google Scholar 

  • Sharma, S., Joshi, V., & Chhetri, R. K. (2014). Forest fire as a potential environmental threat in recent years in Sikkim, Eastern Himalayas, India. Climate Change and Environmental Sustainability, 2(1), 55–61.

    Article  Google Scholar 

  • Sharma, Y., Pasari, S., Ching, K. E., Dikshit, O., Kato, T., Malik, J. N., Chang, C. P., & Yen, J. Y. (2020). Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics, 791, 228556.

    Article  Google Scholar 

  • Shekhar, M. S., Pattanayak, S., Mohanty, U. C., Paul, S., & Kumar, M. S. (2015). A study on the heavy rainfall event around Kedarnath area (Uttarakhand) on 16 June 2013. Journal of Earth System Science, 124(7), 1531–1544.

    Article  ADS  Google Scholar 

  • Shen, T., Wang, G., Replumaz, A., Husson, L., Webb, A. A. G., Bernet, M., Leloup, P. H., Zhang, P., Mahéo, G., & Zhang, K. (2020). Miocene subsidence and surface uplift of southernmost Tibet induced by Indian subduction dynamics. Geochemistry, Geophysics, Geosystems, 21(10), e2020GC009078.

    Article  ADS  Google Scholar 

  • Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar, A., Schwanghart, W., McBride, S., de Vries, M. V. W., Mergili, M., & Emmer, A. (2021). A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 373(6552), 300–306.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Siddique, T., & Pradhan, S. P. (2019). Road widening along National Highway-58, Uttarakhand, India. Current Science, 117(8), 1267–1269.

    Google Scholar 

  • Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., & Dee, D. P. (2010). Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research-Atmospheres, 115(D1). https://doi.org/10.1029/2009jd012442

  • Singh, A. (2018). Communities and disasters in Nagaland: Landslides and the cost of development. In A. Singh, M. Punia, N. Haran, & T. Singh (Eds.), Development and disaster management (p. 409). Palgrave Macmillan. https://doi.org/10.1007/978-981-10-8485-0_28

    Chapter  Google Scholar 

  • Singh, A., & Ganju, A. (2002, December). Earthquakes and avalanches in western Himalaya. In Proceedings of the 12th symposium on earthquake engineering (Vol. 16, p. 18).

    Google Scholar 

  • Singh, S. P., Bassignana-Khadka, I., Karky, B. S., & Sharma, E. (2011). Climate change in the Hindu Kush-Himalayas: The state of current knowledge. ICIMOD.

    Google Scholar 

  • Singh, N., Garbyal, Y., & Kumar, K. (2016). Orographic and tectonic control on extreme events with special reference to Uttarakhand disaster of June 2013 in the Mandakini Valley, India. Journal of Earth Science and Climatic Change, 7(4), 1000346.

    Google Scholar 

  • Singh, D. K., Mishra, V. D., & Gusain, H. S. (2020a). Simulation and analysis of a snow avalanche accident in Lower Western Himalaya, India. Journal of the Indian Society of Remote Sensing, 48(11), 1555–1565.

    Article  Google Scholar 

  • Singh, K. K., Singh, D. K., Thakur, N. K., Dewali, S. K., Negi, H. S., Snehmani, & Mishra, V. D. (2020b). Detection and mapping of snow avalanche debris from Western Himalaya, India using remote sensing satellite images. Geocarto International, 1–19.

    Google Scholar 

  • Singh, A., Juyal, V., Kumar, B., Gusain, H. S., Shekhar, M. S., Singh, P., Kumar, S., & Negi, H. S. (2021a). Avalanche hazard mitigation in East Karakoram mountains. Natural Hazards, 105(1), 643–665.

    Article  Google Scholar 

  • Singh, C., Chauhan, N., Upadhyay, S. K., Singh, R., & Rani, A. (2021b). The Himalayan natural resources: Challenges and conservation for sustainable development. Journal of Pharmacognosy and Phytochemistry, 10(1), 1643–1648.

    CAS  Google Scholar 

  • Singh, M. K., Thayyen, R. J., & Jain, S. K. (2021c). Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm. Geocarto International, 36(20), 2279–2302.

    Article  Google Scholar 

  • Sorg, A., Huss, M., Rohrer, M., & Stoffel, M. (2014). The days of plenty might soon be over in glacierized Central Asian catchments. Environmental Research Letters, 9(10), 104018.

    Article  ADS  Google Scholar 

  • Sridharan, A., & Gopalan, S. (2019). Prediction studies of landslides in the Mangan and Singtam areas triggered by 2011 Sikkim Earthquake. In International conference on advances in computing and data sciences (pp. 609–617). Springer.

    Google Scholar 

  • Stäubli, A., Nussbaumer, S. U., Allen, S. K., Huggel, C., Arguello, M., Costa, F., …, Zimmermann, M. (2018). Analysis of weather-and climate-related disasters in mountain regions using different disaster databases. In Climate change, extreme events and disaster risk reduction (pp. 17–41). Springer.

    Google Scholar 

  • Sun, C., & Zhou, X. (2020). Characterizing hydrological drought and water scarcity changes in the future: A case study in the Jinghe River Basin of China. Water, 12(6), 1605.

    Article  Google Scholar 

  • Sun, X. B., Ren, G. Y., Shrestha, A. B., Ren, Y. Y., You, Q. L., Zhan, Y. J., et al. (2017). Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Advances in Climate Change Research, 8(3), 157–165.

    Article  Google Scholar 

  • Syed, M., & Al Amin, M. (2016). Geospatial modeling for investigating spatial pattern and change trend of temperature and rainfall. Climate, 4(2), 21.

    Article  Google Scholar 

  • Thakuri, S., Chauhan, R., & Baskota, P. (2020). Glacial hazards and avalanches in high mountains of Nepal Himalaya (p. 87). Nepal Mountain Academy.

    Google Scholar 

  • Thompson, I., Shrestha, M., Chhetri, N., & Agusdinata, D. B. (2020). An institutional analysis of glacial floods and disaster risk management in the Nepal Himalaya. International Journal of Disaster Risk Reduction, 47, 101567.

    Article  Google Scholar 

  • Tien Bui, D., Shahabi, H., Omidvar, E., Shirzadi, A., Geertsema, M., Clague, J. J., Khosravi, K., Pradhan, B., Pham, B. T., Chapi, K., & Barati, Z. (2019). Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sensing, 11(8), 931.

    Google Scholar 

  • Tse-ring, K., Sharma, E., Chettri, N., & Shrestha, A. B. (2010). Climate change vulnerability of mountain ecosystems in the Eastern Himalayas. International Centre for Integrated Mountain Development (ICIMOD).

    Google Scholar 

  • Twigg, J. (2004). Disaster risk reduction: Mitigation and preparedness in development and emergency programming. Overseas Development Institute (ODI).

    Google Scholar 

  • Uddin, T., Islam, M. T., & Gosney, J. E. (2021). 2017 Bangladesh landslides: Physical rehabilitation perspective. Disability and Rehabilitation, 43(5), 718–725.

    Article  PubMed  Google Scholar 

  • UNISDR (United Nations International Strategy for Disaster Reduction). (2017). UNISDR annual report 2017. UNISDR.

    Google Scholar 

  • Valipour, M., & Eslamian, S. (2014). Analysis of potential evapotranspiration using 11 modified temperature-based models. International Journal of Hydrology Science and Technology, 4(3), 192–207.

    Google Scholar 

  • Vaidya, R. A., Shrestha, M. S., Nasab, N., Gurung, D. R., Kozo, N., Pradhan, N. S., & Wasson, R. J. (2019). Disaster risk reduction and building resilience in the Hindu Kush Himalaya. In The Hindu Kush Himalaya assessment (pp. 389–419). Springer.

    Google Scholar 

  • Velayudham, J., Kannaujiya, S., Sarkar, T., Taloor, A. K., Bisht, M. P. S., Chawla, S., & Pal, S. K. (2021). Comprehensive study on evaluation of Kaliasaur Landslide attributes in Garhwal Himalaya by the execution of geospatial, geotechnical and geophysical methods. Quaternary Science Advances, 3, 100025.

    Article  Google Scholar 

  • Vinoth, M., Prasad, P. S., Mathur, S., & Kumar, K. (2022). Investigation and design of remedial measures for landslide in Hunthar Veng, Mizoram – A case study. In Stability of slopes and underground excavations (pp. 79–90). Springer.

    Google Scholar 

  • Vishwanath, A., & Sharma, R. (2021). As Himalayan nations deal with glacial floods, cooperation is the key to mitigate disasters. Available at https://scroll.in/article/1004246/as-himalayan-nations-deal-with-glacial-floods-cooperation-is-the-key-to-mitigate-disasters. Accessed 26 Dec 2021.

  • Viste, E., & Sorteberg, A. (2015). Snowfall in the Himalayas: An uncertain future from a little-known past. The Cryosphere, 9(3), 1147–1167.

    Article  ADS  Google Scholar 

  • Wambulwa, M. C., Milne, R., Wu, Z. Y., Spicer, R. A., Provan, J., Luo, Y. H., et al. (2021). Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives. Ecology and Evolution, 11(16), 10794–10812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Che, Y., & Xinggang, M. (2020). Integrated risk assessment of glacier lake outburst flood (GLOF) disaster over the Qinghai–Tibetan Plateau (QTP). Landslides, 17(12), 2849–2863.

    Article  Google Scholar 

  • Wang, S. W., Lim, C. H., & Lee, W. K. (2021). A review of forest fire and policy response for resilient adaptation under changing climate in the Eastern Himalayan region. Forest Science and Technology, 1–9.

    Google Scholar 

  • Watson, C. S., Carrivick, J., & Quincey, D. (2015). An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations. Journal of Hydrology, 529, 1373–1389.

    Article  ADS  Google Scholar 

  • Webb, A. A. G., Guo, H., Clift, P. D., Husson, L., Müller, T., Costantino, D., Yin, A., Xu, Z., Cao, H., & Wang, Q. (2017). The Himalaya in 3D: Slab dynamics controlled mountain building and monsoon intensification. Lithosphere, 9(4), 637–651.

    Google Scholar 

  • Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (2019). The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people (p. 627). Springer.

    Book  Google Scholar 

  • Westoby, M. J., Glasser, N. F., Hambrey, M. J., Brasington, J., Reynolds, J. M., & Hassan, M. A. (2014). Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya. Earth Surface Processes and Landforms, 39(12), 1675–1692.

    Article  ADS  Google Scholar 

  • Wilhite, D. A., Sivakumar, M. V., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13.

    Article  Google Scholar 

  • World Bank. (2006). The World Bank annual report 2006. The World Bank.

    Book  Google Scholar 

  • Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. U. N., & Wilkes, A. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23(3), 520–530.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. S., Shen, S. L., Ren, D. J., & Wu, H. N. (2016). Analysis of factors in land subsidence in Shanghai: A view based on a strategic environmental assessment. Sustainability, 8(6), 573.

    Article  Google Scholar 

  • Yadav, R. K., Gahalaut, V. K., & Bansal, A. K. (2021). Tectonic and non-tectonic crustal deformation in Kumaun Garhwal Himalaya. Quaternary International, 585, 171–182.

    Article  ADS  Google Scholar 

  • Yao, X., Liu, S., Han, L., Sun, M., & Zhao, L. (2018). Definition and classification system of glacial lake for inventory and hazards study. Journal of Geographical Sciences, 28(2), 193–205.

    Article  Google Scholar 

  • You, C., & Xu, C. (2018). Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives. Science of the Total Environment, 616, 1533–1539.

    Article  PubMed  ADS  Google Scholar 

  • You, C., Yao, T., Xu, B., Xu, C., Zhao, H., & Song, L. (2016). Effects of sources, transport, and postdepositional processes on levoglucosan records in southeastern Tibetan glaciers. Journal of Geophysical Research-Atmospheres, 121(14), 8701–8711.

    Article  CAS  ADS  Google Scholar 

  • Zhao, G., Xu, Z., Pang, B., Tu, T., Xu, L., & Du, L. (2019). An enhanced inundation method for urban flood hazard mapping at the large catchment scale. Journal of Hydrology, 571, 873–882.

    Article  ADS  Google Scholar 

  • Zhong, X., Zhang, T., Kang, S., & Wang, J. (2021). Spatiotemporal variability of snow cover timing and duration over the Eurasian continent during 1966–2012. Science of the Total Environment, 750, 141670.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramya, A., Poornima, R., Karthikeyan, G., Priyatharshini, S., Thanuja, K.G., Dhevagi, P. (2023). Climate-Induced and Geophysical Disasters and Risk Reduction Management in Mountains Regions. In: Sharma, S., Kuniyal, J.C., Chand, P., Singh, P. (eds) Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-031-24659-3_16

Download citation

Publish with us

Policies and ethics