Skip to main content

Paraglacial Response to Recent Climate Change in the Upper Ganga Catchment

  • Chapter
  • First Online:
Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya

Abstract

Paraglacial zones are indirectly conditioned by glaciers and glacial processes and are ecologically and geologically unstable. Multiple phases of glacier advances/recessions have left an enormous quantity of unconsolidated sediments in the form of moraines, talus/scree fans, and outwash gravel terraces (collectively known as paraglacial sediment). Thus, the paraglacial zones are transport-limited and not sediment-limited. Small triggers such as an extreme rainfall event or rain on snow may lead to significant sediment mobilization in form of debris avalanches/debris flows inflicting severe damage to life and infrastructures. Therefore, it is pertinent to have a real-time assessment of paraglacial sediments locked in valleys vacated by glaciers in the recent geological past. So that in case of their mobilization during an extreme hydrometeorological condition, a downstream threat perception can be assessed, and the vital infrastructures are protected. With this objective, the present study attempts to estimate the amount of paraglacial sediments stored in the two key tributary river valleys—Dhauli Ganga and Mandakini, in the upper Ganga catchment. Also, locations that can act as natural damming sites for force amplification in case of sediment mobilization during extreme weather events are demarcated. Using the published literature supported by remote sensing techniques, it has been observed that the Dhauli Ganga and Mandakini valleys have stored ~1467 × 106 m3 paraglacial sediment, making these valleys extremely vulnerable to extreme weather events. The study cautions that with global warming as a reality, where frequencies and magnitude of extreme weather events are predicted to increase, extreme caution is required while planning and executing the infrastructure developmental projects, particularly the hydropower projects in these valleys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S. N., Biswas, R. H., Shukla, A. D., & Juyal, N. (2013). Chronology and climatic implications of Late Quaternary glaciations in the Goriganga valley, Central Himalaya, India. Quaternary Science Reviews, 73, 59–76.

    Article  ADS  Google Scholar 

  • Allen, M., Antwi-Agyei, P., Aragon-Durand, F., Babiker, M., Bertoldi, P., et al. (2019). Technical summary: Global warming of 1.5 C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. (In the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty).

    Google Scholar 

  • Armstrong, R. L. (2010). The glaciers of the Hindu Kush-Himalayan region: A summary of the science regarding glacier melt/retreat in the Himalayan, Hindu Kush, Karakoram, Pamir, and Tien Shan mountain ranges (p. 16). International Centre for Integrated Mountain Development (ICIMOD). ISBN: 9789291151738.

    Google Scholar 

  • Ballantyne, C. K. (2002). A general model of paraglacial landscape response. The Holocene, 12(3), 371–376.

    Article  ADS  Google Scholar 

  • Ballesteros-Cánovas, J. A., Trappmann, D., Madrigal-González, J., Eckert, N., & Stoffel, M. (2018). Climate warming enhances snow avalanche risk in the Western Himalayas. Proceedings of the National Academy of Sciences, 115(13), 3410–3415.

    Article  ADS  Google Scholar 

  • Barnard, P. L., Owen, L. A., & Finkel, R. C. (2004). Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 165(3–4), 199–221.

    Article  ADS  Google Scholar 

  • Bisht, P., Ali, S. N., Shukla, A. D., Negi, S., Sundriyal, Y. P., Yadava, M. G., & Juyal, N. (2015). Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley, (Trans Himalaya), Uttarakhand, India. Quaternary Science Reviews, 129, 147–162.

    Article  ADS  Google Scholar 

  • Bisht, P., Ali, S. N., Rana, N., Singh, S., Poonam, Sundriyal, Y. P., Bagri, D. S., & Juyal, N. (2017). Pattern of Holocene glaciation in the monsoon-dominated Kosa Valley, central Himalaya, Uttarakhand, India. Geomorphology, 284, 130–141.

    Article  ADS  Google Scholar 

  • Bist, K. S., & Sinha, A. K. (1980). Some observations on the geological and structural setup of Okhimath area in Garhwal Himalaya. Himalayan Geology, 10, 467–475.

    Google Scholar 

  • Blöthe, J. H., & Korup, O. (2013). Millennial lag times in the Himalayan sediment routing system. Earth and Planetary Science Letters, 382, 38–46.

    Article  ADS  Google Scholar 

  • Chalal, P., Rana, N., Bisht, P., Bagri, D. S., Wasson, R. J., & Sundriyal, Y. (2017). Identification of landslide-prone zones in the geomorphically and climatically sensitive Mandakini valley, (central Himalaya), for disaster governance using the Weights of Evidence method. Geomorphology, 284, 41–52.

    Article  ADS  Google Scholar 

  • Church, M., & Ryder, J. M. (1972). Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin, 83(10), 3059–3072.

    Article  ADS  Google Scholar 

  • Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., & Haeberli, W. (2012). On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Natural Hazards and Earth System Sciences, 12(1), 241–254.

    Article  ADS  Google Scholar 

  • Huggel, C., Clague, J. J., & Korup, O. (2012). Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37(1), 77–91.

    Article  ADS  Google Scholar 

  • Jakob, M., & Hungr, O. (2005). Debris-flow hazards and related phenomena (p. 413). Springer. ISBN 3-540-20726-0.

    Google Scholar 

  • Juyal, N., Pant, R. K., Basavaiah, N., Yadava, M. G., Saini, N. K., & Singhvi, A. K. (2004). Climate and seismicity in the higher Central Himalaya during 20–10 ka: Evidence from the Garbayang basin, Uttaranchal, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 213(3–4), 315–330.

    Article  ADS  Google Scholar 

  • Juyal, N., Pant, R. K., Basavaiah, N., Bhushan, R., Jain, M., Saini, N. K., Yadava, M. G., & Singhvi, A. K. (2009). Reconstruction of Last Glacial to early Holocene monsoon variability from relict lake sediments of the Higher Central Himalaya, Uttrakhand, India. Journal of Asian Earth Sciences, 34(3), 437–449.

    Article  ADS  Google Scholar 

  • Juyal, N., Sundriyal, Y., Rana, N., Chaudhary, S., & Singhvi, A. K. (2010). Late Quaternary fluvial aggradation and incision in the monsoon-dominated Alaknanda valley, Central Himalaya, Uttrakhand, India. Journal of Quaternary Science, 25(8), 1293–1304.

    Article  ADS  Google Scholar 

  • Knight, J., & Harrison, S. (2014). Mountain glacial and paraglacial environments under global climate change: Lessons from the past, future directions and policy implications. Geografiska Annaler: Series A, Physical Geography, 96(3), 245–264.

    Article  Google Scholar 

  • Kumar, D., Singh, A. K., Taloor, A. K., & Singh, D. S. (2021). Recessional pattern of Thelu and Swetvarn glaciers between 1968 and 2019, Bhagirathi basin, Garhwal Himalaya, India. Quaternary International, 575, 227–235.

    Article  ADS  Google Scholar 

  • Liu, J. G., Mason, P. J., Clerici, N., Chen, S., Davis, A., Miao, F., Deng, H., & Liang, L. (2004). Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology, 61(1–2), 171–187.

    Article  ADS  Google Scholar 

  • Maheshwari, B. K. (2019). Earthquake-induced landslide hazard assessment of Chamoli district, Uttarakhand using relative frequency ratio method. Indian Geotechnical Journal, 49(1), 108–123.

    Article  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., et al. (2022). Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. (In the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty), 1(5).

    Google Scholar 

  • Mehta, M., Majeed, Z., Dobhal, D. P., & Srivastava, P. (2012). Geomorphological evidences of post-LGM glacial advancements in the Himalaya: A study from Chorabari Glacier, Garhwal Himalaya, India. Journal of Earth System Science, 121(1), 149–163.

    Article  ADS  Google Scholar 

  • Mukherjee, P. K., Jain, A. K., Singhal, S., Singha, N. B., Singh, S., Kumud, K., Seth, P., & Patel, R. C. (2019). U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications. Gondwana Research, 75, 282–297.

    Article  ADS  CAS  Google Scholar 

  • Mutti, P. R., Dubreuil, V., Bezerra, B. G., Arvor, D., de Oliveira, C. P., & Santos e Silva, C.M. (2020). Assessment of Gridded CRU TS data for long-term climatic water balance monitoring over the Sao Francisco Watershed, Brazil. Atmosphere, 11(11), 1207.

    Article  ADS  Google Scholar 

  • O’Connor, J. E., & Costa, J. E. (1993). Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming. Natural Hazards, 8(2), 121–140.

    Article  Google Scholar 

  • Pandey, V. K., & Mishra, A. (2018). Trends of hydro-meteorological disaster in Uttarakhand, India. International Journal of Current Research in Science and Technology, 4(12), 1–7.

    Google Scholar 

  • Pandey, P., Chauhan, P., Bhatt, C. M., Thakur, P. K., Kannaujia, S., Dhote, P. R., Roy, A., Kumar, S., Chopra, S., Bhardwaj, A., & Aggrawal, S. P. (2021). Cause and process mechanism of rockslide triggered flood event in Rishiganga and Dhauliganga River Valleys, Chamoli, Uttarakhand, India using satellite remote sensing and in situ observations. Journal of the Indian Society of Remote Sensing, 49(5), 1011–1024.

    Article  Google Scholar 

  • Passmore, D. G., Harrison, S., Winchester, V., Rae, A., Severskiy, I., & Pimankina, N. V. (2008). Late Holocene debris flows and valley floor development in the northern Zailiiskiy Alatau, Tien Shan mountains, Kazakhstan. Arctic, Antarctic, and Alpine Research, 40(3), 548–560.

    Article  Google Scholar 

  • Rana, N., Sharma, S., Ali, S. N., Singh, S., & Shukla, A. D. (2019). Investigating the sensitivity of glaciers to climate variability since the MIS-2 in the upper Ganga catchment (Saraswati valley), Central Himalaya. Geomorphology, 346, 106854.

    Article  Google Scholar 

  • Rana, N., Sharma, S., Sundriyal, Y., Kaushik, S., Pradhan, S., Tiwari, G., Khan, F., Sati, S. P., & Juyal, N. (2021a). A preliminary assessment of the 7th February 2021 flashflood in lower Dhauli Ganga valley, Central Himalaya, India. Journal of Earth System Science, 130(2), 1–10.

    Article  ADS  Google Scholar 

  • Rana, N., Sundriyal, Y., Sharma, S., Khan, F., Kaushik, S., Chand, P., Bagri, D. S., Sati, S. P., & Juyal, N. (2021b). Hydrological characteristics of 7th February 2021 Rishi Ganga flood: Implication towards understanding flood hazards in higher Himalaya. Journal of the Geological Society of India, 97(8), 827–835.

    Article  Google Scholar 

  • Ren, J., Qin, D., Kang, S., Hou, S., Pu, J., & Jing, Z. (2004). Glacier variations and climate warming and drying in the central Himalayas. Chinese Science Bulletin, 49(1), 65–69.

    Article  ADS  Google Scholar 

  • Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows in Switzerland: Documentation and analysis. Geomorphology, 8(2–3), 175–189.

    Article  ADS  Google Scholar 

  • Sabin, T. P., Krishnan, R., Vellore, R., Priya, P., Borgaonkar, H. P., Singh, B. B., & Sagar, A. (2020). Climate change over the Himalayas. In R. Krishnan et al. (Eds.), Assessment of climate change over the Indian region (pp. 207–222). Springer. ISBN: 978-981-15-4326-5.

    Chapter  Google Scholar 

  • Sati, S. P., Ali, S. N., Rana, N., Bhattacharya, F., Bhushan, R., Shukla, A. D., Sundriyal, Y., & Juyal, N. (2014). Timing and extent of Holocene glaciations in the monsoon dominated Dunagiri valley (Bangni glacier), Central Himalaya, India. Journal of Asian Earth Sciences, 91, 125–136.

    Article  ADS  Google Scholar 

  • Sharma, S., Sati, S. P., Sundriyal, Y. P., & Dobhal, H. (2021). The 23rd April’21 snow avalanche, Girthi Ganga post the 7th February’21 Rishi Ganga flash flood: Are these events linked to climate warming in the Western Himalaya? Journal of the Geological Society of India, 97(9), 975–979.

    Article  Google Scholar 

  • Slaymaker, O. (2009). Proglacial, periglacial or paraglacial? Geological Society, London, Special Publications, 320(1), 71–84.

    Article  ADS  Google Scholar 

  • Slaymaker, O., & Kelly, R. (2007). The cryosphere and global environmental change (p. 25). Wiley-Blackwell. ISBN: 978-1-405-12976-3.

    Google Scholar 

  • Sundriyal, Y. P., Shukla, A. D., Rana, N., Jayangondaperumal, R., Srivastava, P., Chamyal, L. S., Sati, S. P., & Juyal, N. (2015). Terrain response to the extreme rainfall event of June 2013: Evidence from the Alaknanda and Mandakini River Valleys, Garhwal Himalaya, India. Episodes Journal of International Geoscience, 38(3), 179–188.

    Google Scholar 

  • Taloor, A. K., Joshi, L. M., Kotlia, B. S., Alam, A., Kothyari, G. C., Kandregula, R. S., Singh, A. K., & Dumka, R. K. (2021). Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: A geospatial approach. Quaternary International, 575, 21–36.

    Article  ADS  Google Scholar 

  • Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Tank, A.K., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., & Soden, B. (2007). Observations: Surface and atmospheric climate change. In Climate change 2007: The physical science basis. Contribution of working group 1 to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • Valdiya, K. S. (1980). Geology of Kumaun lesser Himalaya. Wadia Institute of Himalayan Geology.

    Google Scholar 

  • Valdiya, K. S. (1981). Tectonics of the central sector of the Himalaya. Zagros Hindu Kush Himalaya Geodynamic Evolution, 3, 87–110.

    Article  Google Scholar 

Download references

Acknowledgments

The work is part of the MSc dissertation, 2021 of Maria Asim, supervised by Shubhra Sharma. The authors are grateful to Banaras Hindu University for its infrastructural facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asim, M., Pradhan, S., Sharma, S. (2023). Paraglacial Response to Recent Climate Change in the Upper Ganga Catchment. In: Sharma, S., Kuniyal, J.C., Chand, P., Singh, P. (eds) Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-031-24659-3_1

Download citation

Publish with us

Policies and ethics