Skip to main content

Role of Proprotein Convertase Subtilisin Kexin Type 9 in Lipoprotein(a) Metabolism

  • Chapter
  • First Online:
Lipoprotein(a)

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 494 Accesses

Abstract

Proprotein convertase subtilisin kexin 9 (PCSK9) is a major modulator of low-density lipoprotein cholesterol (LDL-C) plasma concentrations through its inhibitory action on LDL receptor (LDLR) expression. As a result, PCSK9 inhibitors lower the circulating concentrations of LDL. Surprisingly, these therapeutic agents also reduce the plasma levels of another class of atherogenic lipoproteins, lipoprotein(a) [Lp(a)]. This observation has driven research aimed at elucidating the role of PCSK9 in Lp(a) metabolism. Is the interaction between PCSK9 and Lp(a) particles LDLR dependent? What are the molecular mechanisms involved? This chapter aims at providing the key insights into the PCSK9-Lp(a) axis based on recent fundamental and clinical research findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf J-M, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    CAS  PubMed  Google Scholar 

  • Argraves KM, Kozarsky KF, Fallon JT, Harpel PC, Strickland DK. The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor. J Clin Invest. 1997;100:2170–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner VA, Szarek M, Aylward PE, Bhatt DL, Diaz R, Edelberg JM, Fras Z, Goodman SG, Halvorsen S, Hanotin C, Harrington RA, Jukema JW, Loizeau V, Moriarty PM, Moryusef A, Pordy R, Roe MT, Sinnaeve P, Tsimikas S, Vogel R, White HD, Zahger D, Zeiher AM, Steg PG, Schwartz GG, ODYSSEY OUTCOMES Committees, Investigators. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol. 2020;75:133–44.

    CAS  PubMed  Google Scholar 

  • Blanchard V, Chemello K, Hollstein T, Hong-Fong CC, Schumann F, Grenkowitz T, Nativel B, Coassin S, Croyal M, Kassner U, Lamina C, Steinhagen-Thiessen E, Lambert G. The size of apolipoprotein (a) is an independent determinant of the reduction in lipoprotein (a) induced by PCSK9 inhibitors. Cardiovasc Res. 2022;118:2103–11.

    Google Scholar 

  • Boffa MB, Koschinsky ML. Proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein(a)-mediated risk of atherosclerotic cardiovascular disease: more than meets the eye? Curr Opin Lipidol. 2019;30:428–37.

    CAS  PubMed  Google Scholar 

  • Brunner C, Lobentanz EM, Pethö-Schramm A, Ernst A, Kang C, Dieplinger H, Müller HJ, Utermann G. The number of identical kringle IV repeats in apolipoprotein(a) affects its processing and secretion by HepG2 cells. J Biol Chem. 1996;271:32403–10.

    CAS  PubMed  Google Scholar 

  • Cain WJ, Millar JS, Himebauch AS, Tietge UJF, Maugeais C, Usher D, Rader DJ. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J Lipid Res. 2005;46:2681–91.

    CAS  PubMed  Google Scholar 

  • Chemello K, Beeské S, Trang Tran TT, Blanchard V, Villard EF, Poirier B, Le Bail J-C, Dargazanli G, Ho-Van-Guimbal S, Boulay D, Bergis O, Pruniaux M-P, Croyal M, Janiak P, Guillot E, Lambert G. Lipoprotein(a) cellular uptake ex vivo and hepatic capture in vivo is insensitive to PCSK9 inhibition with alirocumab. JACC Basic Transl Sci. 2020;5:549–57.

    PubMed  PubMed Central  Google Scholar 

  • Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    CAS  PubMed  Google Scholar 

  • Croyal M, Tran T-T-T, Blanchard RH, Le Bail J-C, Villard EF, Poirier B, Aguesse A, Billon-Crossouard S, Ramin-Mangata S, Blanchard V, Nativel B, Chemello K, Khantalin I, Thedrez A, Janiak P, Krempf M, Boixel C, Lambert G, Guillot E. PCSK9 inhibition with alirocumab reduces lipoprotein(a) levels in nonhuman primates by lowering apolipoprotein(a) production rate. Clin Sci (Lond). 2018;132:1075–83.

    CAS  PubMed  Google Scholar 

  • Edmiston JB, Brooks N, Tavori H, Minnier J, Duell B, Purnell JQ, Kaufman T, Wojcik C, Voros S, Fazio S, Shapiro MD. Discordant response of low-density lipoprotein cholesterol and lipoprotein(a) levels to monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9. J Clin Lipidol. 2017;11:667–73.

    PubMed  Google Scholar 

  • Gabel BR, Koschinsky ML. Sequences within apolipoprotein(a) kringle IV types 6-8 bind directly to low-density lipoprotein and mediate noncovalent association of apolipoprotein(a) with apolipoprotein B-100. Biochemistry. 1998;37:7892–8.

    CAS  PubMed  Google Scholar 

  • Gaudet D, Kereiakes DJ, McKenney JM, Roth EM, Hanotin C, Gipe D, Du Y, Ferrand A-C, Ginsberg HN, Stein EA. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol. 2014;114:711–5.

    CAS  PubMed  Google Scholar 

  • Gaudet D, Watts GF, Robinson JG, Minini P, Sasiela WJ, Edelberg J, Louie MJ, Raal FJ. Effect of alirocumab on lipoprotein(a) over ≥1.5 years (from the Phase 3 ODYSSEY Program). Am J Cardiol. 2017;119:40–6.

    CAS  PubMed  Google Scholar 

  • Hofer G, Steyrer E, Kostner GM, Hermetter A. LDL-mediated interaction of Lp[a] with HepG2 cells: a novel fluorescence microscopy approach. J Lipid Res. 1997;38:2411–21.

    CAS  PubMed  Google Scholar 

  • Hofmann SL, Eaton DL, Brown MS, McConathy WJ, Goldstein JL, Hammer RE. Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice. J Clin Invest. 1990;85:1542–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koschinsky ML, Beisiegel U, Henne-Bruns D, Eaton DL, Lawn RM. Apolipoprotein(a) size heterogeneity is related to variable number of repeat sequences in its mRNA. Biochemistry. 1990;29:640–4.

    CAS  PubMed  Google Scholar 

  • Kraft HG, Menzel HJ, Hoppichler F, Vogel W, Utermann G. Changes of genetic apolipoprotein phenotypes caused by liver transplantation. Implications for apolipoprotein synthesis. J Clin Invest. 1989;83:137–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft HG, Lingenhel A, Raal FJ, Hohenegger M, Utermann G. Lipoprotein(a) in homozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000;20:522–8.

    CAS  PubMed  Google Scholar 

  • Krempler F, Kostner G, Bolzano K, Sandhofer F. Lipoprotein (a) is not a metabolic product of other lipoproteins containing apolipoprotein B. Biochim Biophys Acta. 1979;575:63–70.

    CAS  PubMed  Google Scholar 

  • Kronenberg F. Lipoprotein(a) in various conditions: to keep a sense of proportions. Atherosclerosis. 2014;234:249–51.

    CAS  PubMed  Google Scholar 

  • Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273:6–30.

    CAS  PubMed  Google Scholar 

  • Lagace TA, Curtis DE, Garuti R, McNutt MC, Park SW, Prather HB, Anderson NN, Ho YK, Hammer RE, Horton JD. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J Clin Invest. 2006;116:2995–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G, Thedrez A, Croyal M, Ramin-Mangata S, Couret D, Diotel N, Nobécourt-Dupuy E, Krempf M, LeBail JC, Poirier B, Blankenstein J, Villard EF, Guillot E. The complexity of lipoprotein (a) lowering by PCSK9 monoclonal antibodies. Clin Sci (Lond). 2017;131:261–8.

    CAS  PubMed  Google Scholar 

  • Langsted A, Kamstrup PR, Benn M, Tybjærg-Hansen A, Nordestgaard BG. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes Endocrinol. 2016;4:577–87.

    CAS  PubMed  Google Scholar 

  • Li J, Tumanut C, Gavigan J-A, Huang W-J, Hampton EN, Tumanut R, Suen KF, Trauger JW, Spraggon G, Lesley SA, Liau G, Yowe D, Harris JL. Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J. 2007;406:203–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lingenhel A, Kraft HG, Kotze M, Peeters AV, Kronenberg F, Kruse R, Utermann G. Concentrations of the atherogenic Lp(a) are elevated in FH. Eur J Hum Genet. 1998;6:50–60.

    CAS  PubMed  Google Scholar 

  • Liu R, Saku K, Kostner GM, Hirata K, Zhang B, Shiomi M, Arakawa K. In vivo kinetics of lipoprotein(a) in homozygous Watanabe heritable hyperlipidaemic rabbits. Eur J Clin Investig. 1993;23:561–5.

    CAS  Google Scholar 

  • Mahmood T, Minnier J, Ito MK, Li QH, Koren A, Kam IW, Fazio S, Shapiro MD. Discordant responses of plasma low-density lipoprotein cholesterol and lipoprotein(a) to alirocumab: a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur J Prev Cardiol. 2021;28:816–22.

    PubMed  Google Scholar 

  • Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004;101:7100–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SPA, Schneider WJ. Lipoprotein(a) catabolism: a case of multiple receptors. Pathology. 2019;51:155–64.

    CAS  PubMed  Google Scholar 

  • McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem. 2007;282:20799–803.

    CAS  PubMed  Google Scholar 

  • Nassoury N, Blasiole DA, Tebon Oler A, Benjannet S, Hamelin J, Poupon V, McPherson PS, Attie AD, Prat A, Seidah NG. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic. 2007;8:718–32.

    CAS  PubMed  Google Scholar 

  • Niemeier A, Willnow T, Dieplinger H, Jacobsen C, Meyer N, Hilpert J, Beisiegel U. Identification of megalin/gp330 as a receptor for lipoprotein(a) in vitro. Arterioscler Thromb Vasc Biol. 1999;19:552–61.

    CAS  PubMed  Google Scholar 

  • O’Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, Im K, Lira Pineda A, Wasserman SM, Češka R, Ezhov MV, Jukema JW, Jensen HK, Tokgözoğlu SL, Mach F, Huber K, Sever PS, Keech AC, Pedersen TR, Sabatine MS. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139:1483–92.

    PubMed  Google Scholar 

  • Qian Y-W, Schmidt RJ, Zhang Y, Chu S, Lin A, Wang H, Wang X, Beyer TP, Bensch WR, Li W, Ehsani ME, Lu D, Konrad RJ, Eacho PI, Moller DE, Karathanasis SK, Cao G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48:1488–98.

    CAS  PubMed  Google Scholar 

  • Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Blom D, Seidah NG, Honarpour N, Lira A, Xue A, Chiruvolu P, Jackson S, Di M, Peach M, Somaratne R, Wasserman SM, Scott R, Stein EA. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J Lipid Res. 2016;57:1086–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard PLJ, Curcio D, Jaros MJ, Leiter LA, Kastelein JJP, ORION-9 Investigators. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382:1520–30.

    CAS  PubMed  Google Scholar 

  • Rader DJ, Mann WA, Cain W, Kraft HG, Usher D, Zech LA, Hoeg JM, Davignon J, Lupien P, Grossman M. The low density lipoprotein receptor is not required for normal catabolism of Lp(a) in humans. J Clin Invest. 1995;95:1403–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray KK, Vallejo-Vaz AJ, Ginsberg HN, Davidson MH, Louie MJ, Bujas-Bobanovic M, Minini P, Eckel RH, Cannon CP. Lipoprotein(a) reductions from PCSK9 inhibition and major adverse cardiovascular events: pooled analysis of alirocumab phase 3 trials. Atherosclerosis. 2019;288:194–202.

    CAS  PubMed  Google Scholar 

  • Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, Kastelein JJP, ORION-10 and ORION-11 Investigators. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382:1507–19.

    CAS  PubMed  Google Scholar 

  • Reblin T, Niemeier A, Meyer N, Willnow TE, Kronenberg F, Dieplinger H, Greten H, Beisiegel U. Cellular uptake of lipoprotein[a] by mouse embryonic fibroblasts via the LDL receptor and the LDL receptor-related protein. J Lipid Res. 1997;38:2103–10.

    CAS  PubMed  Google Scholar 

  • Reyes-Soffer G, Pavlyha M, Ngai C, Thomas T, Holleran S, Ramakrishnan R, Karmally W, Nandakumar R, Fontanez N, Obunike J, Marcovina SM, Lichtenstein AH, Matthan NR, Matta J, Maroccia M, Becue F, Poitiers F, Swanson B, Cowan L, Sasiela WJ, Surks HK, Ginsberg HN. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation. 2017;135:352–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJP, ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.

    CAS  PubMed  Google Scholar 

  • Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem. 2015;290:11649–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romagnuolo R, Scipione CA, Marcovina SM, Gemin M, Seidah NG, Boffa MB, Koschinsky ML. Roles of the low density lipoprotein receptor and related receptors in inhibition of lipoprotein(a) internalization by proprotein convertase subtilisin/kexin type 9. PLoS One. 2017;12:e0180869.

    PubMed  PubMed Central  Google Scholar 

  • Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA, Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.

    CAS  PubMed  Google Scholar 

  • Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    CAS  PubMed  Google Scholar 

  • Shapiro MD, Minnier J, Tavori H, Kassahun H, Flower A, Somaratne R, Fazio S. Relationship between low-density lipoprotein cholesterol and lipoprotein(a) lowering in response to PCSK9 inhibition with evolocumab. J Am Heart Assoc. 2019;8:e010932.

    PubMed  PubMed Central  Google Scholar 

  • Sharma M, Redpath GM, Williams MJA, McCormick SPA. Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circ Res. 2017;120:1091–102.

    CAS  PubMed  Google Scholar 

  • Snyder ML, Polacek D, Scanu AM, Fless GM. Comparative binding and degradation of lipoprotein(a) and low density lipoprotein by human monocyte-derived macrophages. J Biol Chem. 1992;267:339–46.

    CAS  PubMed  Google Scholar 

  • Stein EA, Giugliano RP, Koren MJ, Raal FJ, Roth EM, Weiss R, Sullivan D, Wasserman SM, Somaratne R, Kim JB, Yang J, Liu T, Albizem M, Scott R, Sabatine MS, Investigators PROFICIO. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. 2014;35:2249–59.

    CAS  PubMed  Google Scholar 

  • Steyrer E, Kostner GM. Interaction of lipoprotein Lp[a] with the B/E-receptor: a study using isolated bovine adrenal cortex and human fibroblast receptors. J Lipid Res. 1990;31:1247–53.

    CAS  PubMed  Google Scholar 

  • Tada H, Kawashiri M-A, Yoshida T, Teramoto R, Nohara A, Konno T, Inazu A, Mabuchi H, Yamagishi M, Hayashi K. Lipoprotein(a) in familial hypercholesterolemia with proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutations. Circ J. 2016;80:512–8.

    CAS  PubMed  Google Scholar 

  • Thedrez A, Blom DJ, Ramin-Mangata S, Blanchard V, Croyal M, Chemello K, Nativel B, Pichelin M, Cariou B, Bourane S, Tang L, Farnier M, Raal FJ, Lambert G. Homozygous FH patients with identical mutations variably express the LDL receptor: implications for the efficacy of evolocumab. Arterioscler Thromb Vasc Biol. 2018;38:592–8.

    CAS  PubMed  Google Scholar 

  • Trinder M, DeCastro ML, Azizi H, Cermakova L, Jackson LM, Frohlich J, Mancini GBJ, Francis GA, Brunham LR. Ascertainment bias in the association between elevated lipoprotein(a) and familial hypercholesterolemia. J Am Coll Cardiol. 2020;75:2682–93.

    CAS  PubMed  Google Scholar 

  • van der Hoek YY, Lingenhel A, Kraft HG, Defesche JC, Kastelein JJ, Utermann G. Sib-pair analysis detects elevated Lp(a) levels and large variation of Lp(a) concentration in subjects with familial defective ApoB. J Clin Invest. 1997;99:2269–73.

    PubMed  PubMed Central  Google Scholar 

  • Villard EF, Thedrez A, Blankenstein J, Croyal M, Tran T-T-T, Poirier B, Le Bail J-C, Illiano S, Nobécourt E, Krempf M, Blom DJ, Marais AD, Janiak P, Muslin AJ, Guillot E, Lambert G. PCSK9 modulates the secretion but not the cellular uptake of lipoprotein(a) ex vivo: an effect blunted by alirocumab. JACC Basic Transl Sci. 2016;1:419–27.

    PubMed  PubMed Central  Google Scholar 

  • Watts GF, Chan DC, Somaratne R, Wasserman SM, Scott R, Marcovina SM, Barrett PHR. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur Heart J. 2018;39:2577–85.

    CAS  PubMed  Google Scholar 

  • Watts GF, Chan DC, Pang J, Ma L, Ying Q, Aggarwal S, Marcovina SM, Barrett PHR. PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism. 2020;107:154221.

    CAS  PubMed  Google Scholar 

  • White AL, Guerra B, Wang J, Lanford RE. Presecretory degradation of apolipoprotein [a] is mediated by the proteasome pathway. J Lipid Res. 1999;40:275–86.

    CAS  PubMed  Google Scholar 

  • Yang X-P, Amar MJ, Vaisman B, Bocharov AV, Vishnyakova TG, Freeman LA, Kurlander RJ, Patterson AP, Becker LC, Remaley AT. Scavenger receptor-BI is a receptor for lipoprotein(a). J Lipid Res. 2013;54:2450–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef A, Clark JR, Marcovina SM, Boffa MB, Koschinsky ML. ApoA and ApoB interact noncovalently within hepatocytes: implications for regulation of Lp(a) (lipoprotein[a]) levels by modulation of ApoB secretion. Arterioscler Thromb Vasc Biol. 2022;42:289–304.

    CAS  PubMed  Google Scholar 

  • Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, Cohen JC, Hobbs HH. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79:514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallo, A., Chemello, K., Techer, R., Jaafar, A., Lambert, G. (2023). Role of Proprotein Convertase Subtilisin Kexin Type 9 in Lipoprotein(a) Metabolism. In: Kostner, K., Kostner, G.M., Toth, P.P. (eds) Lipoprotein(a). Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-24575-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24575-6_6

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-24574-9

  • Online ISBN: 978-3-031-24575-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics