Skip to main content

Lp(a) Biochemistry, Composition, and Structure

  • Chapter
  • First Online:
Lipoprotein(a)

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 532 Accesses

Abstract

In early reports by Kare Berg from Oslo, Norway, Lp(a) was described as a pre-ß1 lipoprotein found in the region of HDL by ultracentrifugation. Subsequent studies from numerous laboratories revealed that Lp(a) consists of an LDL-like core particle and the characteristic apo(a) glycoprotein both linked by one disulfide bridge. Since the lipid composition of LDL varies quite considerably among patients, it is evident that this might be also the case for Lp(a). Most of the structural and compositional studies on Lp(a) were performed on preparations obtained from healthy fasting normolipemic individuals where fractions in the density of HDL1 were harvested. The composition of Lp(a) preparations from non-fasting—dyslipoproteinemic individuals—or from density fractions outside of HDL1 is by far less clear.

Idealized Lp(a) preparations with a hydrated density characteristic for HDL1 consist of a core that is indistinguishable from parent LDL. Their morphology by electron microscopy is very similar to that of LDL. Such Lp(a) is rich in cholesteryl esters and phospholipids and has lower amounts of free cholesterol and triglycerides. The characteristic Lp(a) antigen, apo(a), is a glycoprotein with up to 30% w/w of N- and O-glycosylated sugars, rich in sialic acid. The terminal sialic acid of apo(a) prevents its fast catabolism by specific asialo-glycoprotein receptors on liver cells. The protein backbone of apo(a) has a characteristic structure dominated by so-called kringles that are highly homologous to kringle-IV of plasminogen. There is also a kringle-V like structure and a protease domain found in apo(a) whose gene and protein sequence are very similar to those found in plasminogen.

The various kringles found in apo(a) are not only key for the assembly with LDL to form Lp(a) but also impact profoundly the Lp(a) metabolism. On one side, kringles are responsible for binding to Lys groups on LDL, and on the other side, they mediate binding of apo(a) to cell surfaces followed by catabolism or degradation. There are numerous mutated and polymorphic forms of apo(a) that show altered metabolism. In a similar way, the morphology and composition of LDL greatly impact the assembly and metabolism of Lp(a) as evident from studies with LDL from LCAT-deficient patients or patients with the B-3500 mutation of apoB-100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo(a):

Specific antigen of Lp(a)

ASGPR:

Asialo-glycoprotein receptor

LCAT:

Lecithin:cholesterol acyl transferase

LDL:

Low-density lipoprotein

Lp:

Lipoprotein

Lp(a):

Lipoprotein(a)

References

  • Alaupovic P, Kostner G, Lee DM, McConnathy WJ, Magnani HN. Peptide composition of human plasma lipoproteins A, B and C. Exp Ann Biochim Med. 1972;31:145–60.

    CAS  Google Scholar 

  • Allison AC, Blumberg BS. An isoprecipitation reaction distinguishing human serum protein types. Lancet. 1961;1:634–7.

    Article  CAS  PubMed  Google Scholar 

  • Berg K. A new serum type system in man—the Lp system. Acta Path Microbiol Scand. 1963;59:369–82.

    Article  CAS  PubMed  Google Scholar 

  • Bundschuh A, Vogt A. Die Häufigkeit des Merkmals Lp(a) in der Berliner Bevölkerung. Humangenetik. 1965;1:379–82.

    CAS  PubMed  Google Scholar 

  • Coassin S, Schönherr S, Weissensteiner H, Erhart G, Forer L, Lee Losso J, Lamina C, Haun M, Utermann G, Paulweber B, Specht G, Kronenberg F. A comprehensive map of single-base polymorphisms in the hypervariable LPA kringle IV type 2 copy number variation region. J Lipid Res. 2019;60:186–99.

    Article  CAS  PubMed  Google Scholar 

  • Durovic S, März W, Frank S, Scharnagl H, Baumstark MW, Zechner R, Kostner GM. Decreased binding of apolipoprotein(a) to familial defective apolipoprotein B-100 (Arg3500→Gln). J Biol Chem. 1994;269:30320–5.

    Article  CAS  PubMed  Google Scholar 

  • Ernst Steyrer E, Durovic S, Frank S, Gissauf W, Burger A, Dieplinger H, Zechner R, Kostner GM. The role of lecithin: cholesterol acyltransferase for lipoprotein(a) assembly structural integrity of low density lipoproteins is a prerequisite for Lp(a) formation in human plasma. J Clin Invest. 1994;9:2330–40.

    Article  Google Scholar 

  • Fadden AJ, Holt OJ, Drickamer K. Molecular characterization of the rat Kupffer cell glycoprotein receptor. Glycobiology. 2003;13:529–37.

    Article  CAS  PubMed  Google Scholar 

  • Fless G. Heterogeneity of particles containing the apo-apo(a) complex. In: Scanu AM, editor. Lipoprotein(a). New York: Academic Press; 1990. p. 41–51.

    Chapter  Google Scholar 

  • Fless GM, ZumMallen ME, Scanu AM. Isolation of apolipoprotein(a) from lipoprotein(a). J Lipid Res. 1985;26:1224–9.

    Article  CAS  PubMed  Google Scholar 

  • Frank S, Hrazenjak A, Blaschitz G, Dohr G, Kostner GM. Role of various tissues in apo(a) fragmentation and excretion of fragments by the kidney. Eur J Clin Invest. 2001;31:504–412.

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276:148–56.

    Article  CAS  PubMed  Google Scholar 

  • Garner B, Merry AH, Royle L, Harvey DJ, Rudd PM, Thillet J. Structural elucidation of the N- and O-glycans of human apolipoprotein(a). J Biol Chem. 2001;276:22200–8.

    Article  CAS  PubMed  Google Scholar 

  • Gofman JW, Lindgren FT, Elliott H. Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem. 1949;179:937–9.

    Article  Google Scholar 

  • Gries A, Nimpf J, Nimpf M, Wurm H, Kostner GM. Free and apoB-associated Lp(a) specific protein in human serum. Clin Chim Acta. 1987;164:93–100.

    Article  CAS  PubMed  Google Scholar 

  • Hofer G, Steyrer E, Kostner GM, Hermetter A. LDL-mediated interaction of Lp[a] with HepG2 cells: a novel fluorescence microscopy approach. J Lipid Res. 1997;38(241):1–2421.

    Google Scholar 

  • Frank S, Hrzenjak A, Kostner K, Sattler W, Kostner GM. Effect of tranexamic acid and N-aminovaleric acid on lipoprotein(a)metabolism in transgenic mice. Biochim Biophys Acta. 1999;1438:99–110.

    Article  CAS  PubMed  Google Scholar 

  • Hrzenjak A, Frank S, Wo X, Zhou Y, Van Berkel T, Kostner GM. Galactose specific asialo glycoprotein receptor is involved in lipoprotein(a) catabolism. Biochem J. 2003;376:765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostner GM. Lp(a) lipoproteins and the genetic polymorphisms of lipoprotein B. In: Day CE, Levy RS, editors. Low density lipoproteins. New York: Plenum Press; 1976. p. 229–69.

    Chapter  Google Scholar 

  • Kostner GM. Apolipoproteins and lipoproteins of human plasma: significance in health and disease. Adv Lipid Res. 1983;20:1–41.

    CAS  PubMed  Google Scholar 

  • Kostner GM, Avogaro P, Cazzolato G, Marth E, Bittolo-Bon G, Quinci GB. Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis. 1981;38:51–61.

    Article  CAS  PubMed  Google Scholar 

  • Kostner KM, Maurer G, Huber K, Stefenelli T, Dieplinger H, Steyrer E, Kostner GM. Urinary excretion of apo(a) fragments. Role in apo(a) catabolism. Arteriosc Thromb Vasc Biol. 1996;16:905–11.

    Article  CAS  Google Scholar 

  • Kostner GM, Ibovnik A, Holzer H, Grillhofer H. Preparation of a stable fresh frozen primary lipoprotein[a] standard. J Lipid Res. 1999;40:2255–63.

    Article  CAS  PubMed  Google Scholar 

  • Kostner K, Spitzauer S, Rumpold H, Maurer G, Knipping G, Hrzenjak A, Frank S, Kostner GM. Urinary excretion of apolipoprotein(a): relation to other plasma proteins. Clin Chim Acta. 2001;304:29–37.

    Article  CAS  PubMed  Google Scholar 

  • Kyriakou T, Seedorf U, Goel A, Hopewell JC, Clarke R, Watkins H, Farrall M, on behalf of the PROCARDIS Consortium. A common LPA null allele associates with lower lipoprotein(a) levels and coronary artery disease risk. Arterioscler Thromb Vasc Biol. 2014;34:2095–9.

    Article  CAS  PubMed  Google Scholar 

  • McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330:132–27.

    Article  CAS  PubMed  Google Scholar 

  • Morrisett JD, Gaubatz JW, Knapp RD, Guevara JG Jr. Structural properties of apo(a): a major apoprotein of human lipoprotein(a). In: Scanu AM, editor. Lipoprotein(a). New York: Academic Press; 1990. p. 41–51.

    Google Scholar 

  • Noureen A, Fresser F, Utermann G, Schmidt K. Sequence variation within the KIV-2 copy number polymorphism of the human LPA gene in African, Asian, and European populations. PLoS One. 2015:1–23. https://doi.org/10.1371/journal.pone.0121582.

  • Ogorelkova M, Gruber A, Utermann G. Molecular basis of congenital Lp(a) deficiency: a frequent apo(a) null mutation in Caucasians. Hum Mol Genet. 1999;8:2087–96.

    Article  CAS  PubMed  Google Scholar 

  • Roos PH, Kolb-Bachofen V, Schlepper-Schafer J, Monsigny M, Stockert RJ, Kolb H. Two galactose-specific receptors in the liver with different function. FEBS Lett. 1983;157:253–6.

    Article  CAS  PubMed  Google Scholar 

  • Utermann G. The mysteries of lipoprotein(a). Science. 1989;246:904–10.

    Article  CAS  PubMed  Google Scholar 

  • Van Berkel TJ, Kruijt JK, Spanjer HH, Nagelkerke JF, Harkes L, Kempen HJ. The effect of a water-soluble Tris-galactoside-terminated cholesterol derivative on the fate of low density lipoproteins and liposomes. J Biol Chem. 1985;260:2694–9.

    Article  PubMed  Google Scholar 

  • Weisel JW, Nagaswami C, Woodhead JL, Higazi AA-R, Cain WJ, Marcovina SM, Koschinsky ML, Cines DB, Bdeir K. The structure of lipoprotein(a) and ligand-induced conformational changes. Biochemistry. 2001;40:10424–35.

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Rahman MN, Koschinsky ML, JIA Z. High-resolution crystal structure of apolipoprotein(a) kringle IV type 7: insights into ligand binding. Protein Sci. 2001;10:1124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard M. Kostner .

Editor information

Editors and Affiliations

Ethics declarations

I have nothing to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostner, G.M. (2023). Lp(a) Biochemistry, Composition, and Structure. In: Kostner, K., Kostner, G.M., Toth, P.P. (eds) Lipoprotein(a). Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-24575-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24575-6_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-24574-9

  • Online ISBN: 978-3-031-24575-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics