Skip to main content

Lipoprotein(a) and Immunity

  • Chapter
  • First Online:
Lipoprotein(a)

Abstract

Elevated lipoprotein(a) [Lp(a)] is a valuable risk factor for development of atherosclerotic cardiovascular diseases (ASCVD). Within this chapter, we discuss the molecular and cellular pathways related to the pro-inflammatory and pro-atherogenic activity of Lp(a). Lp(a) is considered as a potential auto-antigen and DAMP-containing particle. Attention is paid to its capacity to bind to and transport several mediators, involved in the initiation and progression of arterial wall inflammation. We put in this chapter currently available information about Lp(a) and autoantibodies with different structure against Lp(a); innate immunity cells; pro-inflammatory status in ASCVD pathogenesis and Lp(a) as a carrier of inflammatory and repair mediators.

The effect of Lp(a) on the maturation, phenotype, and effector functions of immune cells participating in atherogenesis, particularly monocytes and macrophages, is also discussed. Age-associated chronic pro-inflammatory status, or inflammaging, accompanied by immune perturbations may contribute to the realization of pathophysiological effects of Lp(a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’eva OI, Klesareva EA, Levashov PA, Berestetskaya YV, Ezhov MV, Artem’eva NV, Pokrovskii SN. Autoantibodies against lipoprotein(a) in patients with coronary heart disease. Kardiologiya. 2014;54(6):4–8.

    PubMed  Google Scholar 

  • Afanasieva OI, Pylaeva EA, Arefieva TI, Klesareva EA, Afanasieva MI, Potekhina AV, Shchinova AM, Balakhonova TV, Pogorelova OA, Tripoten MI, Pokrovsky SN. Lipoprotein(a) and T-helper cells as independent predictors of rapid progression of carotid atherosclerosis. Atherosclerosis. 2016a;252:e126–7.

    Google Scholar 

  • Afanasieva OI, Pylaeva EA, Klesareva EA, Potekhina AV, Provatorov SI, Afanasieva MI, Krasnikova TL, Masenko VP, Arefieva TI, Pokrovsky SN. Lipoprotein(a), its autoantibodies, and circulating T lymphocyte subpopulations as independent risk factors for coronary artery atherosclerosis. Ter Arkh. 2016b;88(9):31–8.

    PubMed  Google Scholar 

  • Afanasieva OI, Filatova AY, Arefieva TI, Klesareva EA, Tyurina AV, Radyukhina NV, Ezhov MV, Pokrovsky SN. The association of lipoprotein(a) and circulating monocyte subsets with severe coronary atherosclerosis. J Cardiovasc Dev Dis. 2021;8(6):63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Afanasieva OI, Tyurina AV, Klesareva EA, Arefieva TI, Ezhov MV, Pokrovsky SN. Lipoprotein(a), immune cells and cardiovascular outcomes in patients with premature coronary heart disease. J Pers Med. 2022;12(2):269.

    PubMed  PubMed Central  Google Scholar 

  • Albany CJ, Trevelin SC, Giganti G, Lombardi G, Scottà C. Getting to the heart of the matter: the role of regulatory T-cells (Tregs) in cardiovascular disease (CVD) and atherosclerosis. Front Immunol. 2019;10:2795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger MC, Dahou A, Lépine JL, Laflamme MH, Hadji F, Couture C, Trahan S, Pagé S, Bossé Y, Pibarot P, Scipione CA, Romagnuolo R, Koschinsky ML, Arsenault BJ, Marette A, Mathieu P. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation. 2015;132(8):677–90.

    CAS  PubMed  Google Scholar 

  • Bourgeois R, Girard A, Perrot N, Guertin J, Mitchell PL, Couture C, Gotti C, Bourassa S, Poggio P, Mass E, Capoulade R, Scipione CA, Després AA, Couture P, Droit A, Pibarot P, Boffa MB, Thériault S, Koschinsky ML, Mathieu P, Arsenault BJ. A comparative analysis of the lipoprotein(a) and low-density lipoprotein proteomic profiles combining mass spectrometry and Mendelian randomization. CJC Open. 2020a;3(4):450–9.

    PubMed  PubMed Central  Google Scholar 

  • Bourgeois R, Devillers R, Perrot N, Després AA, Boulanger MC, Mitchell PL, Guertin J, Couture P, Boffa MB, Scipione CA, Pibarot P, Koschinsky ML, Mathieu P, Arsenault BJ. Interaction of autotaxin with lipoprotein(a) in patients with calcific aortic valve stenosis. JACC Basic Transl Sci. 2020b;5(9):888–97.

    PubMed  PubMed Central  Google Scholar 

  • Bourgeois R, Bourgault J, Despres AA, Perrot N, Guertin J, Girard A, Mitchell PL, Gotti C, Bourassa S, Scipione CA, Gaudreault N, Boffa MB, Koschinsky ML, Pibarot P, Droit A, Thériault S, Mathieu P, Bossé Y, Arsenault BJ. Lipoprotein proteomics and aortic valve transcriptomics identify biological pathways linking lipoprotein(a) levels to aortic stenosis. Metabolites. 2021;11(7):459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brusko TM, Wasserfall CH, Hulme MA, Cabrera R, Schatz D, Todd Atkinson MA. Influence of membrane CD25 stability on T lymphocyte activity: implications for immunoregulation. PLoS One. 2009;4(11):e7980.

    PubMed  PubMed Central  Google Scholar 

  • de Vries MR, Ewing MM, de Jong RCM, MacArthur MR, Karper JC, Peters EAB, Nordzell M, Karabina SAP, Sexton D, Dahlbom I, Bergman A, Mitchell JR, Frostegård J, Kuiper J, Ninio E, Jukema JW, Pettersson K, Quax PHA. Identification of IgG1 isotype phosphorylcholine antibodies for the treatment of inflammatory cardiovascular diseases. J Intern Med. 2021;290(1):141–56.

    PubMed  PubMed Central  Google Scholar 

  • Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736–43.

    PubMed  Google Scholar 

  • Dzobo KE, Kraaijenhof JM, Stroes E, Nurmohamed NS, Kroon J. Lipoprotein(a): an underestimated inflammatory mastermind. Atherosclerosis. 2022;349:101–9.

    CAS  PubMed  Google Scholar 

  • Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.

    CAS  PubMed  Google Scholar 

  • Filatova AY, Potekhina AV, Aref'eva TI. Age-associated characteristics of CD4+ T-cell composition in patients with atherosclerosis. Immuno. 2021;1(3):277–84.

    Google Scholar 

  • Filatova AY, Potekhina AV, Radyukhina NV, Ruleva NY, Provatorov SI, Aref'eva TI. Circulating monocyte populations in patients with coronary atherosclerosis. Future Cardiol. 2022;18(6):455–60.

    CAS  Google Scholar 

  • Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.

    CAS  PubMed  Google Scholar 

  • Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P, Guo C, Wang Q, Wang X, Ma C, Zhang Y, Chen W, Zhang L. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol. 2010;185(10):5820–7.

    CAS  PubMed  Google Scholar 

  • Holodick NE, Rodríguez-Zhurbenko N, Hernández AM. Defining natural antibodies. Front Immunol. 2017;8:872.

    PubMed  PubMed Central  Google Scholar 

  • Huang M, Gong Y, Grondolsky J, Hoover-Plow J. Lp(a)/apo(a) modulate MMP-9 activation and neutrophil cytokines in vivo in inflammation to regulate leukocyte recruitment. Am J Pathol. 2014;184(5):1503–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi M, Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Ozaki Y, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Kitabata H, Hirata K, Akasaka T. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis. 2010;212(1):171–6.

    CAS  PubMed  Google Scholar 

  • Kim YU, Kee P, Danila D, Teng B-B. A critical role of PCSK9 in mediating IL-17-producing T cell responses in hyperlipidemia. Immune Netw. 2019;19(6):e41.

    PubMed  PubMed Central  Google Scholar 

  • Klesareva EA, Afanas’eva OI, Donskikh VV, Adamova IY, Pokrovskii SN. Characteristics of lipoprotein(a)-containing circulating immune complexes as markers of coronary heart disease. Bull Exp Biol Med. 2016;162(2):231–6.

    CAS  PubMed  Google Scholar 

  • Klesareva EA, Afanasieva OI, Kononova EV, Utkina EA, Ezhov MV, Balakhonova TV, Afanasieva MI, Pokrovsky SN. Raised IgM autoantibody titer to lipoprotein(a) as antiatherogenic factor in severe hypercholesterolemia patients. Russ J Cardiol. 2018;8:13–20.

    Google Scholar 

  • Klimov AN. Autoimmune theory of atherogenesis and the concept of modified lipoproteins. Vestn Akad Med Nauk SSSR. 1990;11:30–6.

    Google Scholar 

  • Knowlden S, Georas SN. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J Immunol. 2014;192(3):851–7.

    CAS  PubMed  Google Scholar 

  • Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): epidemiology, biochemistry and pathophysiology. Atherosclerosis. 2022;349:92–100.

    CAS  PubMed  Google Scholar 

  • Krychtiuk KA, Kastl SP, Pfaffenberger S, Pongratz T, Hofbauer SL, Wonnerth A, Katsaros KM, Goliasch G, Gaspar L, Huber K, Maurer G, Dostal E, Oravec S, Wojta J, Speidl WS. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease. Atherosclerosis. 2014;237(2):589–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krychtiuk KA, Kastl SP, Hofbauer SL, Wonnerth A, Goliasch G, Ozsvar-Kozma M, Katsaros KM, Maurer G, Huber K, Dostal E, Binder CJ, Pfaffenberger S, Oravec S, Wojta J, Speidl WS. Monocyte subset distribution in patients with stable atherosclerosis and elevated levels of lipoprotein(a). J Clin Lipidol. 2015a;9(4):533–41.

    PubMed  PubMed Central  Google Scholar 

  • Krychtiuk KA, Kastl SP, Pfaffenberger S, Lenz M, Hofbauer SL, Wonnerth A, Koller L, Katsaros KM, Pongratz T, Goliasch G, Niessner A, Gaspar L, Huber K, Maurer G, Dostal E, Wojta J, Oravec S, Speidl WS. Association of small dense LDL serum levels and circulating monocyte subsets in stable coronary artery disease. PLoS One. 2015b;10(4):e0123367.

    PubMed  PubMed Central  Google Scholar 

  • Lawn RM. Lipoprotein(a) in heart disease. Sci Am. 1992;266(6):54–60.

    Google Scholar 

  • Libby P, Nahrendorf M, Swirski FK. Monocyte heterogeneity in cardiovascular disease. Semin Immunopathol. 2013;35(5):553–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Frostegard J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Intern Med. 2018;284:193–210.

    CAS  Google Scholar 

  • Liuzzo G, Trotta F, Pedicino D. Interleukin-17 in atherosclerosis and cardiovascular disease: the good, the bad, and the unknown. Eur Heart J. 2013;34(8):556–9.

    PubMed  Google Scholar 

  • März W, Beckmann A, Scharnagl H, Siekmeier R, Mondorf U, Held I, Schneider W, Preissner KT, Curtiss LK, Gross W, Hüttinger M. Heterogeneous lipoprotein(a) size isoforms differ by their interaction with the low-density lipoprotein receptor and the low-density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. FEBS Lett. 1993;325(3):271–5.

    PubMed  Google Scholar 

  • Masoomikarimi M, Salehi M. Modulation of the immune system promotes tissue regeneration. Mol Biotechnol. 2022;64(6):599–610.

    CAS  PubMed  Google Scholar 

  • Naka KK, Bechlioullis A, Marini A, Sionis D, Vakalis K, Triantis G, Wilkins L, Rogus J, Kornman KS, Witztum JL, Doucette-Stamm L, Michalis LK, Tsimikas S. Interleukin-1 genotypes modulate the long-term effect of lipoprotein(a) on cardiovascular events: the Ioannina study. J Clin Lipidol. 2018;12(2):338–47.

    PubMed  Google Scholar 

  • Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol. 2020;92(1):e12883.

    PubMed  Google Scholar 

  • Panza F, D’introno A, Capurso C, Colacicco AM, Seripa D, Pilotto A, Santamato A, Capurso A, Solfrizzi V. Lipoproteins, vascular-related genetic factors, and human longevity. Rejuvenation Res. 2007;10(4):441–58.

    PubMed  Google Scholar 

  • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattarabanjird T, Li C, McNamara C. B cells in atherosclerosis: mechanisms and potential clinical applications. JACC Basic Transl Sci. 2021;6(6):546–63.

    PubMed  PubMed Central  Google Scholar 

  • Piro A, Tagarelli A, Tagarelli G, Lagonia P, Quattrone A. Paul Ehrlich: the Nobel Prize in physiology or medicine 1908. Int Rev Immunol. 2008;27(1–2):1–17.

    CAS  PubMed  Google Scholar 

  • Pirro M, Bianconi V, Paciullo F, Mannarino MR, Bagaglia F, Sahebkar A. Lipoprotein(a) and inflammation: a dangerous duet leading to endothelial loss of integrity. Pharmacol Res. 2017;119:178–87.

    CAS  PubMed  Google Scholar 

  • Pluijmert NJ, de Jong RCM, de Vries MR, Pettersson K, Atsma DE, Jukema JW, Quax PHA. Phosphorylcholine antibodies restrict infarct size and left ventricular remodelling by attenuating the unreperfused post-ischaemic inflammatory response. J Cell Mol Med. 2021;25(16):7772–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pokrovsky SN, Afanasieva OI, Ezhov MV. Lipoprotein(a) apheresis. Curr Opin Lipidol. 2016;27(4):351–8.

    CAS  PubMed  Google Scholar 

  • Pokrovsky SN, Afanasieva OI, Safarova MS, Balakhonova TV, Matchin YG, Adamova IY, Konovalov GA, Ezhov MV. Specific Lp(a) apheresis: a tool to prove lipoprotein(a) atherogenicity. Atheroscler Suppl. 2017;30:166–73.

    CAS  PubMed  Google Scholar 

  • Pokrovsky SN, Afanasieva OI, Ezhov MV. Therapeutic apheresis for management of Lp(a) hyperlipoproteinemia. Curr Atheroscler Rep. 2020;22(11):68.

    CAS  PubMed  Google Scholar 

  • Potekhina AV, Pylaeva EA, Provatorov SI, Ruleva N, Masenko V, Noeva E, Krasnikova T, Arefieva T. Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis. Atherosclerosis. 2015;238(1):17–21.

    CAS  PubMed  Google Scholar 

  • Prasad A, Clopton P, Ayers C, Khera A, de Lemos JA, Witztum JL, Tsimikas S. Relationship of autoantibodies to MDA-LDL and ApoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Arterioscler Thromb Vasc Biol. 2017;37(6):1213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puri R, Nissen SE, Arsenault BJ, St John J, Riesmeyer JS, Ruotolo G, McErlean E, Menon V, Cho L, Wolski K, Lincoff AM, Nicholls SJ. Effect of C-reactive protein on lipoprotein(a)-associated cardiovascular risk in optimally treated patients with high-risk vascular disease: a prespecified secondary analysis of the ACCELERATE trial. JAMA Cardiol. 2020;5(10):1136–43.

    PubMed  Google Scholar 

  • Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, Yao Z, Chang L, Pan G, Zhong H, Luo X, Yao K, Sun A, Qian J, Ding Z, Ge J. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation. 2021;143(1):45–61.

    CAS  PubMed  Google Scholar 

  • Ravandi A, Boekholdt SM, Mallat Z, Talmud PJ, Kastelein JJ, Wareham NJ, Miller ER, Benessiano J, Tedgui A, Witztum JL, Khaw KT, Tsimikas S. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. J Lipid Res. 2011;52(10):1829–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyneveld GI, Savelkoul H, Parmentier HK. Current understanding of natural antibodies and exploring the possibilities of modulation using veterinary models. A review. Front Immunol. 2020;11:2139.

    PubMed  PubMed Central  Google Scholar 

  • Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, Große-Dunker G, Heisel I, Hornof F, Jeken J, Rebling NM, Ulrich C, Scheller B, Böhm M, Fliser D, Heine GH. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol. 2012;60(16):1512–20.

    CAS  PubMed  Google Scholar 

  • Sabarinath PS, Appukuttan PS. Immunopathology of desialylation: human plasma lipoprotein(a) and circulating anti-carbohydrate antibodies form immune complexes that recognize host cells. Mol Cell Biochem. 2015;403(1–2):13–23.

    CAS  PubMed  Google Scholar 

  • Sabbah N, Jaisson S, Garnotel R, Anglés-Cano E, Gillery P. Small size apolipoprotein(a) isoforms enhance inflammatory and proteolytic potential of collagen-primed monocytes. Lipids Health Dis. 2019;18(1):166.

    PubMed  PubMed Central  Google Scholar 

  • Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 2020;17(7):387–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salonen JT, Ylä-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssönen K, Palinski W, Witztum JL. Autoantibody against oxidized LDL and progression of carotid atherosclerosis. Lancet. 1992;339(8798):883–7.

    CAS  PubMed  Google Scholar 

  • Schnitzler JG, Poels K, Stiekema LCA, Yeang C, Tsimikas S, Kroon J, Stroes ESG, Lutgens E, Seijkens TTP. Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes. Int J Cardiol. 2020;315:81–5.

    PubMed  Google Scholar 

  • Scipione CA, Sayegh SE, Romagnuolo R, Tsimikas S, Marcovina SM, Boffa MB, Koschinsky ML. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J Lipid Res. 2015;56(12):2273–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro MD, Tavori H, Fazio S. PCSK9: from basic science discoveries to clinical trials. Circ Res. 2018;122(10):1420–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein RL. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) goes “DAMP”. Circulation. 2021;143(1):62–4.

    PubMed  Google Scholar 

  • Sotiriou SN, Orlova VV, Al-Fakhri N, Ihanus E, Economopoulou M, Isermann B, Bdeir K, Nawroth PP, Preissner KT, Gahmberg CG, Koschinsky ML, Chavakis T. Lipoprotein(a) in atherosclerotic plaques recruits inflammatory cells through interaction with Mac-1 integrin. FASEB J. 2006;20(3):559–61.

    CAS  PubMed  Google Scholar 

  • Ståhle M, Silvola JMU, Hellberg S, de Vries M, Quax PHA, Kroon J, Rinne P, de Jong A, Liljenbäck H, Savisto N, Wickman A, Stroes ESG, Ylä-Herttuala S, Saukko P, Abrahamsson T, Pettersson K, Knuuti J, Roivainen A, Saraste A. Therapeutic antibody against phosphorylcholine preserves coronary function and attenuates vascular 18F-FDG uptake in atherosclerotic mice. JACC Basic Transl Sci. 2020;5(4):360–73.

    PubMed  PubMed Central  Google Scholar 

  • Stiekema LCA, Prange KHM, Hoogeveen RM, Verweij SL, Kroon J, Schnitzler JG, Dzobo KE, Cupido AJ, Tsimikas S, Stroes ESG, de Winther MPJ, Bahjat M. Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a). Eur Heart J. 2020;41(24):2262–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Futami-Suda S, Igari Y, Watanabe K, Ouchi M, Suzuki K, Sekimizu K, Kigawa Y, Nakano H, Oba K. Low-molecular-weight lipoprotein(a) and low relative lymphocyte concentration are significant and independent risk factors for coronary heart disease in patients with type 2 diabetes mellitus: Lp(a) phenotype, lymphocyte, and coronary heart disease. Lipids Health Dis. 2013;12:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavori H, Christian D, Minnier J, Plubell D, Shapiro MD, Yeang C, Giunzioni I, Croyal M, Duell PB, Lambert G, Tsimikas S, Fazio S. PCSK9 association with lipoprotein(a). Circ Res. 2016;119(1):29–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020;17:2.

    PubMed  PubMed Central  Google Scholar 

  • Tmoyan NA, Afanasieva OI, Ezhov MV, Klesareva EA, Balakhonova TV, Pokrovsky SN. Lipoprotein(a), immunity, and inflammation in polyvascular atherosclerotic disease. J Cardiovasc Dev Dis. 2021;8(2):11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsimikas S, Willeit P, Willeit J, Santer P, Mayr M, Xu Q, Mayr A, Witztum JL, Kiechl S. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. J Am Coll Cardiol. 2012;60:2218–29.

    CAS  PubMed  Google Scholar 

  • Tucker B, Sawant S, McDonald H, Rye KA, Patel S, Ong KL, Cochran BJ. The association of serum lipid and lipoprotein levels with total and differential leukocyte counts: results of a cross-sectional and longitudinal analysis of the UK Biobank. Atherosclerosis. 2021;319:1–9.

    CAS  PubMed  Google Scholar 

  • van den Berg VJ, Haskard DO, Fedorowski A, Hartley A, Kardys I, Caga-Anan M, Akkerhuis KM, Oemrawsingh RM, van Geuns RJ, de Jaegere P, van Mieghem N, Regar E, Ligthart JMR, Umans VAWM, Serruys PW, Melander O, Boersma E, Khamis RY. IgM anti-malondialdehyde low density lipoprotein antibody levels indicate coronary heart disease and necrotic core characteristics in the Nordic Diltiazem (NORDIL) study and the Integrated Imaging and Biomarker Study 3 (IBIS-3). EBioMedicine. 2018;36:63–72.

    PubMed  PubMed Central  Google Scholar 

  • van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, Nieuwdorp M, Joosten LA, Netea MG, Koschinsky ML, Witztum JL, Tsimikas S, Riksen NP, Stroes ES. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134(8):611–24.

    PubMed  PubMed Central  Google Scholar 

  • Vergallo R, Crea F. Atherosclerotic plaque healing. N Engl J Med. 2020;383(9):846–57.

    CAS  PubMed  Google Scholar 

  • Virella G, Lopes-Virella MF. Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis. 2008;200(2):239–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Zychlinski A, Kleffmann T, Williams MJ, McCormick SP. Proteomics of lipoprotein(a) identifies a protein complement associated with response to wounding. J Proteome. 2011;74(12):2881–91.

    Google Scholar 

  • von Zychlinski A, Williams M, McCormick S, Kleffmann T. Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins. J Proteome. 2014;106:181–90.

    Google Scholar 

  • Wang J, Qiang H, Zhang C, Liu X, Chen D, Wang S. Detection of IgG-bound lipoprotein(a) immune complexes in patients with coronary heart disease. Clin Chim Acta. 2003;327(1–2):115–22.

    CAS  PubMed  Google Scholar 

  • Wang H, Coligan JE, Morse HC 3rd. Emerging functions of natural IgM and its Fc receptor FCMR in immune homeostasis. Front Immunol. 2016;7:99.

    PubMed  PubMed Central  Google Scholar 

  • Wiesner P, Tafelmeier M, Chittka D, Choi SH, Zhang L, Byun YS, Almazan F, Yang X, Iqbal N, Chowdhury P, Maisel A, Witztum JL, Handel TM, Tsimikas S, Miller YI. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma. J Lipid Res. 2013;54(7):1877–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.

    PubMed  PubMed Central  Google Scholar 

  • Zawadzki Z, Tercé F, Seman LJ, Theolis RT, Breckenridge WC, Milne RW, Marcel YL. The linkage with apolipoprotein(a) in lipoprotein(a) modifies the immunochemical and functional properties of apolipoprotein B. Biochemistry. 1988;27(22):8474–81.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chen YC, Krummel MF, Rosen SD. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J Immunol. 2012;189(8):3914–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Gilbert Thompson for his help in proofreading text of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afanasieva, O.I., Arefieva, T.I., Ezhov, M.V., Pokrovsky, S.N. (2023). Lipoprotein(a) and Immunity. In: Kostner, K., Kostner, G.M., Toth, P.P. (eds) Lipoprotein(a). Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-24575-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24575-6_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-24574-9

  • Online ISBN: 978-3-031-24575-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics