Skip to main content

Credit Default Risk Analysis Using Machine Learning Algorithms with Hyperparameter Optimization

  • Conference paper
  • First Online:
Intelligent Technologies: Design and Applications for Society (CITIS 2022)

Abstract

Machine learning models are an important tool that provide a scientific method to identify potential debtors early and predict which clients are more likely to default on their debts, improving the accuracy of assessment in credit risk analysis in financial companies. The purpose of this study was to analyze the performance of gradient boosting machine learning algorithms (CatBoost, LightGBM, and XGBoost) in predicting customer default risk, and the ability of the RandomUnderSampler sampling technique to address unbalanced categories of credit risk. The exploratory analysis of the data set was carried out, then the data preprocessing, finally the training with hyperparameter adjustments with the GridSearchCV method to identify the largest number of clients with credit risk. The model is evaluated based on metrics of sensitivity, specificity and precision, on a set of consumer credit data. Among the proposed algorithms, XGBoost outperformed the LightGBM and catBoost models. Experimental results confirmed that the XGBoost model performs better for credit risk prediction with historical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tames, L.A.L., Campos, B.C., Navarro, F.A.C.: Inteligencia artificial para la transformaci on digital en toma de decisiones. Tecnologıa Vital 4(7) (2020)

    Google Scholar 

  2. Redero Juanes, B., et al.: La transformaci on digital de las empresas. estudio del caso del sector financiero. el banco santander (2020)

    Google Scholar 

  3. Borrero-Tigreros, D., Bedoya-Leiva, O.F.: Predicci on de riesgo crediticio en colombia usando t ecnicas de inteligencia artificial. Revista UIS Ingenier ıas 19(4), 37–52 (2020)

    Article  Google Scholar 

  4. Shwartz-Ziv, R., Armon, A.: Deep Learning in not all you need (2021)

    Google Scholar 

  5. Pinedo Borobio, P.: Modelos recientes de la estad ıstica y el aprendizaje m aquina para la valoración del riesgo de incumplimiento crediticio.

    Google Scholar 

  6. Saqib Aziz, M.D.: Ai and machine learning for risk management. SSRN Electronic Journal (2018)

    Google Scholar 

  7. Guiterrez-Portela, F., Moreno-Hernandez, J.J., Echeverry, B.D., Jaramillo, A.S.: Uso de los sistemas inteligentes para la deteccion de fraudes financieros. Revista Sinergia 1(6), 6–30 (2019)

    Google Scholar 

  8. Peter Martey Addo, D.G., Hassani, B.: Credit risk analysis using machine and deep. Computational Methods for Risk Management in Economics (2018)

    Google Scholar 

  9. Ravid Shwartz-Ziv, A.A.: Deep learning is not all you need (2021)

    Google Scholar 

  10. Anastasios Petropoulos, E.S., Siakoulis, V., Klamargias, A.: A robust machine learning approach for credit risk. Ninth IFC Conference (2018)

    Google Scholar 

  11. Alvarez, J.G.: Machine learning y riesgo de crédito. Facultad de Ciencias Económicas y Empresariales (2020)

    Google Scholar 

  12. Bastos, R.: Credit risk analysis with machine learning. Towards Data Science (2020)

    Google Scholar 

  13. Ala’raj, M., Abbod, M.F., Majdalawieh, M.: Modelling customers credit card behaviour using bidirectional lstm neural networks. Journal of Big Data 8 (2021)

    Google Scholar 

  14. Sacoto Cabrera, E.: Análisis basado en teoría de juegos de modelos de negocio de operadores m oviles virtuales en redes 4g y 5g, Ph.D. dissertation, Universitat Polit`ecnica de Valéncia (2021)

    Google Scholar 

  15. Rojo, M.R.A.: Modelo predictivo de análisis de riesgo crediticio usando machine learning en una entidad del sector microfinanciero (2019)

    Google Scholar 

  16. Fernandez, D.T.: Aplicacion de metodologias machine learning en la gestion de riesgo de crédito. Universidad Politecnica de Madrid (2017)

    Google Scholar 

  17. Tianqi Chen, A.G.: XGBoost: A scalable tree boosting system (2016)

    Google Scholar 

  18. Malbrn, A.E.: Modelo de predicción de operaciones de crédito con posible default financiero (2020)

    Google Scholar 

  19. Wu, S.: How to choose between different boosting algorithms. Towards Data Science (2021)

    Google Scholar 

  20. Li, Y.: Credit risk prediction based on machine learning (2019)

    Google Scholar 

  21. Sacoto Cabrera, A.J., Palaguachi, S., Leon-Paredes, G.A., Gallegos-Segovia, P.L., Bravo-Quezada, O.G.: Industrial communication based on mqtt and modbus communication applied in a meteorological network. In: The International Conference on Advances in Emerging Trends and Technologies, pp. 29–41. Springer (2020)

    Google Scholar 

  22. Ligang Zhou, H.D.R.M., Fujita, H.: Credit risk modeling on data with two timestamps in peer-to-peer lending by gradient boosting (2021)

    Google Scholar 

  23. Sacoto-Cabrera, A.J., Leon-Paredes, G., Verdugo-Romero, W.: Lorawan: Application of nonlinear optimization to base stations location. In: Communication, Smart Technologies and Innovation for Society, pp. 515–524. Springer (2022)

    Google Scholar 

  24. Daoud, A.A.: Comparison between xgboost, lightgbm and catboost using a home credit dataset. International Journal of Computer and Information Engineering (2019)

    Google Scholar 

  25. Naik, K.: Predicting credit risk for unsecured lending: A machine learning approach (2021)

    Google Scholar 

  26. Coser, A.: Predictive models for loan default risk (2019)

    Google Scholar 

  27. Hancock, J.T., Khoshgoftaar, T.M.: Catboost for big data: an interdisciplinary review. Journal of big data 7(1), 1–45 (2020)

    Article  Google Scholar 

  28. Liudmila Prokhorenkova, A.V.A.V.D.A.G., Gusev, G.: Catboost: unbiased boosting with categorical features (2017)

    Google Scholar 

  29. Biarnes, A.: How catboost encodes categorical variables? Towards Data Science (2021)

    Google Scholar 

  30. Sujoy Barua, P.S.L.S.J.R., Gavandi, D.: Predicting the probability of loan defaults using CatBoost algorithm. In: 5th International Conference on Computing Methodologies and Communication (ICCMC) (2021)

    Google Scholar 

  31. Wirot Yotsawat, A., Wattuya, P.: Improved credit scoring model using xgboost with bayesian hyper-parameter optimization. International Journal of Electrical and Computer Engineering (IJECE) (2021)

    Google Scholar 

  32. Fisnik Doko, S.K., Mishkovski, I.: Credit risk model based on central bank credit registry data (2021)

    Google Scholar 

  33. de Juan Fernandez, A.: Importancia de los valores atípicos en el modelo de regresión causas, consecuencias, detección y tratamiento (1995)

    Google Scholar 

  34. Arias, L.A.P.: Evaluación de modelos de machine learning para sistemas de detección de intrusos en redes iot (2021)

    Google Scholar 

  35. Tarawneh, A.S., Hassanat, A.B., Altarawneh, G.A., Almuhaimeed, A.: Stop oversampling for class imbalance learning: A review. IEEE Access 10, 47 643–47 660 (2022)

    Google Scholar 

  36. Tharwat, A.: Classification assessment methods. Applied Computing and Informatics 17, 168–192 (2021)

    Article  Google Scholar 

  37. Pushpa Singh, K.K.S.A.S., Singh, N.: Diagnosing of disease using machine learning (2021)

    Google Scholar 

  38. Nitesh, L.O.H.W.P.K., Chawla, V., Bowyer, K.W.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research (2002)

    Google Scholar 

  39. Ma, T., Wu, L., Zhu, S., Zhu, H.: Multiclassification prediction of clay sensitivity using extreme gradient boosting based on imbalanced dataset. Applied Sciences 12(3) (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Inga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inga, J., Sacoto-Cabrera, E. (2023). Credit Default Risk Analysis Using Machine Learning Algorithms with Hyperparameter Optimization. In: Robles-Bykbaev, V., Mula, J., Reynoso-Meza, G. (eds) Intelligent Technologies: Design and Applications for Society. CITIS 2022. Lecture Notes in Networks and Systems, vol 607. Springer, Cham. https://doi.org/10.1007/978-3-031-24327-1_8

Download citation

Publish with us

Policies and ethics