Skip to main content

Simulation by CFD of the Internal Baffles of the Condenser in a 300 L Heat Pump for Residential Water Heating with Refrigerants R717 and R744

  • Conference paper
  • First Online:
Intelligent Technologies: Design and Applications for Society (CITIS 2022)

Abstract

This document compares the best alternatives regarding two working fluids and three operating conditions for a helical baffle in a shell and tube heat exchanger. It begins by investigating issues related to the study problem, validated by scientific documents, the most relevant properties of the working fluids and the material used (INOX 304) for the study are presented. The deductive analytical method used with the characteristics obtained shows how the heat transfer area increases as the angle of the baffle increases, the boundary conditions of the water are also detailed as: 10 ℃ at the entrance with a velocity of 0.8 m/s at a pressure of 25 psi evaluated in the Ansys Fluent software, determining that the best option for residential water heating is the use of refrigerant R744 with a 25° inclination for the helical baffle. The results show that under these parameters a better heat transfer is obtained reaching a temperature of 31.5 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franco, I.G., Marcucci Pico, D.F., Dall’Onder dos Santos, D., Bandarra Filho, E.P.: A review on the performance and environmental assessment of R-410A alternative refrigerants. J. Build. Eng. 47(November 2021), 103847 (2021). https://doi.org/10.1016/j.jobe.2021.103847

  2. Lv, H., Ma, H., Mao, N., He, T.: Boiling heat transfer mechanism of environmental-friendly refrigerants: a review. Int. J. Refrig. 133(August 2021), 214–225 (2022). https://doi.org/10.1016/j.ijrefrig.2021.10.007

  3. ASHRAE, Handbook-Refrigeration SI Edition. SI Edition, Atlanta (2014)

    Google Scholar 

  4. Mangrulkar, C.K., Dhoble, A.S., Chamoli, S., Gupta, A., Gawande, V.B.: Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers. Renew. Sustain. Energy Rev. 113(November 2018), 109220 (2019). https://doi.org/10.1016/j.rser.2019.06.027

  5. Master, B.I., Chunangad, K.S., Boxma, A.J., Kral, D., Stehlík, P.: Most frequently used heat exchangers from pioneering research to worldwide applications. Heat Transf. Eng. 27(6), 4–11 (2006). https://doi.org/10.1080/01457630600671960

    Article  Google Scholar 

  6. Jafari Nasr, M.R., Shafeghat, A.: Fluid flow analysis and extension of rapid design algorithm for helical baffle heat exchangers. Appl. Therm. Eng. 28(11–12), 1324–1332 (2008). https://doi.org/10.1016/j.applthermaleng.2007.10.021

    Article  Google Scholar 

  7. Stehlík, P., Němčanský, J., Kral, D., Swanson, L.W.: Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles. Heat Transf. Eng. 15(1), 55–65 (1994). https://doi.org/10.1080/01457639408939818

    Article  Google Scholar 

  8. Bichkar, P., Dandgaval, O., Dalvi, P., Godase, R., Dey, T.: Study of shell and tube heat exchanger with the effect of types of baffles. Proc. Manuf. 20, 195–200 (2018). https://doi.org/10.1016/j.promfg.2018.02.028

    Article  Google Scholar 

  9. Hu, H., Yang, G., Ding, G., Chen, J., Yang, W., Hu, S.: Heat transfer characteristics of mixed hydrocarbon refrigerant flow condensation in shell side of helically baffled shell-and-tube heat exchanger. Appl. Therm. Eng. 133(August 2017), 785–796 (2018). https://doi.org/10.1016/j.applthermaleng.2018.01.083

  10. El Maakoul, A., Laknizi, A., Saadeddine, S., Ben Abdellah, A., Meziane, M., El Metoui, M.: Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energy Convers. Manag. 133, 76–86 (2017). https://doi.org/10.1016/j.enconman.2016.12.002

    Article  Google Scholar 

  11. Peng, B., et al.: An experimental study of shell-and-tube heat exchangers with continuous helical baffles. J. Heat Transfer 129(10), 1425–1431 (2007). https://doi.org/10.1115/1.2754878

    Article  Google Scholar 

  12. Wu, D., Hu, B., Wang, R.Z.: Vapor compression heat pumps with pure Low-GWP refrigerants. Renew. Sustain. Energy Rev. 138(April 2020), 110571 (2021). https://doi.org/10.1016/j.rser.2020.110571

  13. Hervás-Blasco, E., Navarro-Peris, E., Corberán, J.M.: Closing the residential energy loop: grey-water heat recovery system for domestic hot water production based on heat pumps. Energy Build. 216, 109962 (2020). https://doi.org/10.1016/j.enbuild.2020.109962

    Article  Google Scholar 

  14. Ara, S.R.: Análisis y cálculo de sistemas de producción de ACS y calefacción con bomba de calor de CO2 (2015)

    Google Scholar 

  15. Diaby, A.T., Byrne, P., Maré, T.: Simulation of heat pumps for simultaneous heating and cooling using CO2. Int. J. Refrig. 106, 616–627 (2019). https://doi.org/10.1016/j.ijrefrig.2019.03.010

    Article  Google Scholar 

  16. Li, S., Li, S., Zhang, X.: Simulation research of a hybrid heat source heat pump using R134a, R744 instead of R22 for domestic water heating in residential buildings. Energy Build. 91, 57–64 (2015). https://doi.org/10.1016/j.enbuild.2015.01.019

    Article  Google Scholar 

  17. Lorentzen, G.: Ammonia: an excellent alternative. Int. J. Refrig. 11(4), 248–252 (1988). https://doi.org/10.1016/0140-7007(88)90082-5

    Article  Google Scholar 

  18. Li, Z., Jiang, H., Chen, X., Liang, K.: Comparative study on energy efficiency of low GWP refrigerants in domestic refrigerators with capacity modulation. Energy Build. 192, 93–100 (2019). https://doi.org/10.1016/j.enbuild.2019.03.031

    Article  Google Scholar 

Download references

Acknowledgment

The authors are especially grateful to the Research Group on Renewable Energies and Mechanical Implementation of SMEs of the Salesian Polytechnic University, Quito-Ecuador, and to the Student Branch of ASHRAE UPS Quito.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Toapanta-Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oleas, S., Kevin, P., Toapanta-Ramos, F., Quitiaquez, W. (2023). Simulation by CFD of the Internal Baffles of the Condenser in a 300 L Heat Pump for Residential Water Heating with Refrigerants R717 and R744. In: Robles-Bykbaev, V., Mula, J., Reynoso-Meza, G. (eds) Intelligent Technologies: Design and Applications for Society. CITIS 2022. Lecture Notes in Networks and Systems, vol 607. Springer, Cham. https://doi.org/10.1007/978-3-031-24327-1_17

Download citation

Publish with us

Policies and ethics