Skip to main content

Synthesis of Nanometric and Submicron Particles of Titanium Dioxide for the Formation of Nanostructured Films

  • Conference paper
  • First Online:
Intelligent Technologies: Design and Applications for Society (CITIS 2022)

Abstract

Dye-sensitized solar cells (DSSCs) are solar devices that have attracted the attention of renewable energy researchers in the two last decades. Every component of DSSC has been an improvement to obtain a satisfactory efficiency. DSSC consists of three principal layers, two of them act as load carriers and the other keeps the electrolyte responsible for producing a charge flow to the electrodes of the solar cell. In this work, the intermediate layer was made from nanometric and submicron particles of TiO2 synthesized by the sol-gel method and assembled by the screen-printing technique. The screen-printing pastes of TiO2 consisted of a mixture of polyethylene glycol, acetic acid, α-terpineol, and water, where the porosity depends on the percentage of polyethylene glycol/TiO2 in the film. The characterization of the particles of TiO2 based on Raman spectroscopy and DLS indicated that the film was anatase phase and the particle size was nanometric and submicron respectively, while the characterization of the porous film consisted of the determination of the crystalline structure, morphological characteristics, and absorbance capacity. The results proved that the TiO2 films built with MD paste showed 35.94% of porosity, the highest porosity of all pastes, and absorbance of 0.04835, a good absorbance of low energy UV compared to the absorbance of commercial CO film, absence of cracks, and cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Gurunathan, S.: Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf. B Biointerf. 75(1), 335–341 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.006

    Article  Google Scholar 

  2. Yu, R., Lin, Q., Leung, S.-F., Fan, Z.: Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1(1), 57–72 (2012). https://doi.org/10.1016/j.nanoen.2011.10.002

  3. Yan, X., Chen, X.: Titanium dioxide nanomaterials. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, pp. 1–38. Wiley, Chichester (2015)

    Google Scholar 

  4. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107(7), 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  5. Bai, Y., Angelis, F.D., Bisquert, J., Wang, P.: Titanium dioxide nanomaterials for photocatalytic applications. Chem. Rev. 10131–10176 (2014). https://doi.org/10.1021/cr400606n

  6. Shah, A.A., Umar, A.A., Salleh, M.M.: Porous (001)-faceted anatase TiO2 nanorice thin film for efficient dye-sensitized solar cell. EPJ Photovoltaics 7, 70501 (2016). https://doi.org/10.1051/EPJPV/2015009

    Article  Google Scholar 

  7. Jahromi, H.S., Taghdisian, H., Afshar, S., Tasharrofi, S.: Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film. Surf. Coatings Technol. 203(14), 1991–1996 (2009). https://doi.org/10.1016/j.surfcoat.2009.01.034

  8. Guerrero, V.H., et al.: Nuevos Materiales: Aplicaciones Estructurales E Industriales 2015 (2011)

    Google Scholar 

  9. Park, N.G., Van De Lagemaat, J., Frank, A.J.: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104(38), 8989–8994 (2000). https://doi.org/10.1021/JP994365L

    Article  Google Scholar 

  10. Chopra, K.L., Paulson, P.D., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovoltaics Res. Appl. 12(23), 69–92 (2004). https://doi.org/10.1002/pip.541

    Article  Google Scholar 

  11. Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009). https://doi.org/10.1016/j.solmat.2008.10.004

    Article  Google Scholar 

  12. Giraldo, M., Robledo, L.: Estudio por Microscopía de Fuerza Atómica (AFM) del Soporte de TiO2 sobre Vidrio para la Degradación de Contaminantes por Fotocatálisis Heterogénea, Universidad Tecnológica de Pereira (2015)

    Google Scholar 

  13. Mosquera, E., Rosas, N., Debut, A., Guerrero, V.H.: Síntesis y Caracterización de Nanopartículas de Dióxido de Titanio Obtenidas por el Método de Sol-Gel. Rev. Politécnica 36(3) (2015)

    Google Scholar 

  14. Benkstein, K., Kopidakis, N., Van de Lagemaat, J., Frank, A.: Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B 107(31), 7759–7767 (2003). https://doi.org/10.1021/Jp0226811

    Article  Google Scholar 

  15. Wang, Z.-S., Yanagida, M., Sayama, K., Sugihara, H.: Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency. Chem. Mater. 18(12), 2912–2916 (2006). https://doi.org/10.1021/cm0603102

    Article  Google Scholar 

  16. Su, C., Hong, B.-Y., Tseng, C.-M.: Sol–gel preparation and photocatalysis of titanium dioxide. Catal. Today 96(3), 119–126 (2004). https://doi.org/10.1016/j.cattod.2004.06.132

    Article  Google Scholar 

  17. Bahnemann, D., Henglein, A., Spanhel, L.: Detection of the intermediates of colloidal TiO2-catalysed photoreactions. Faraday Discuss. Chem. Soc. 78, 151 (1984). https://doi.org/10.1039/dc9847800151

    Article  Google Scholar 

  18. Agudelo, L., Escobar, D., De La Roche, J., Restrepo, E., Arango, P.: Producción de películas delgadas de TIO 2 obtenidas por la técnica de arco catódico. Sci. Tech. 19(1), 84–88 (2014)

    Google Scholar 

  19. Ito, S., et al.: Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovoltaics Res. Appl. 15(7), 603–612 (2007). https://doi.org/10.1002/pip.768

    Article  Google Scholar 

  20. Fan, K., Liu, M., Peng, T., Ma, L., Dai, K.: Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells. Renew. Energy 35(2), 555–561 (2010). https://doi.org/10.1016/j.renene.2009.07.010

    Article  Google Scholar 

  21. Bu, S., Jin, Z., Liu, X., Yang, L., Cheng, Z.: Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J. Eur. Ceram. Soc. 25(5), 673–679 (2005). https://doi.org/10.1016/j.jeurceramsoc.2003.12.025

    Article  Google Scholar 

  22. Ramírez, A.: Desarrollo De Películas Porosas De Tio2 Sobre Vidrio Conductor Ito Por El Método Sol-Gel Para Su Uso Como Fotoánodo En Celdas Fotoelectroquímicas. Universidad Industrial de Santander (2009)

    Google Scholar 

  23. Lei, J., Li, X., Li, W., Sun, F., Lu, D., Yi, J.: Arrayed porous iron-doped TiO2 as photoelectrocatalyst with controllable pore size. Int. J. Hydrogen Energy 36(14), 8167–8172 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.121

    Article  Google Scholar 

  24. Calderon-Moreno, J.M., et al.: Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method. Ceram. Int. 40(1), 2209–2220 (2014). https://doi.org/10.1016/j.ceramint.2013.07.139

  25. Bhogaita, M., Yadav, S., Bhanushali, A.U., Parsola, A.A., Pratibha Nalini, R.: Synthesis and characterization of TiO2 thin films for DSSC prototype. Mater. Today Proc. 3(6), 2052–2061 (2016). https://doi.org/10.1016/J.MATPR.2016.04.108

  26. Calero, M., Santacruz, P.: Construcción y caracterización de celdas solares sensibilizadas por pigmentos naturales extraídos de plantas existentes en el Ecuador y determinación de la eficiencia de conversión energética. Escuela Politécnica Nacional, Quito (2016)

    Google Scholar 

  27. Cid-Ortega, S., Guerrero-Beltran, J.A.: Roselle Calyces particle size effect on the physicochemical and phytochemicals characteristics. J. Food Res. 3(5), p83 (2014). https://doi.org/10.5539/JFR.V3N5P83

    Article  Google Scholar 

  28. Xie, D., et al.: Preparation of porous nanocrystalline TiO2 electrode by screen-printing technique. Chin. Sci. Bull. 52(18), 2481–2485 (2007). https://doi.org/10.1007/s11434-007-0372-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daysi Baño Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baño Morales, D., Rosas-Laverde, N., Santacruz, C. (2023). Synthesis of Nanometric and Submicron Particles of Titanium Dioxide for the Formation of Nanostructured Films. In: Robles-Bykbaev, V., Mula, J., Reynoso-Meza, G. (eds) Intelligent Technologies: Design and Applications for Society. CITIS 2022. Lecture Notes in Networks and Systems, vol 607. Springer, Cham. https://doi.org/10.1007/978-3-031-24327-1_13

Download citation

Publish with us

Policies and ethics