Skip to main content

Nonlinear Identification and Position Control of a Pneumatic System

  • Conference paper
  • First Online:
Intelligent Technologies: Design and Applications for Society (CITIS 2022)

Abstract

In this work a pneumatic positioning system is studied. The system presents high nonlinearities since it is subjected to static friction, dead bands, and dead times. Firstly, the system identification is done using nonlinear identification based on the Hammerstein-Wiener model. Then, some control strategies such as Proportional-Integral-Derivative (PID) controller, Fuzzy-PID controller and Model Predictive Control (MPC) are designed to handle these nonlinearities. The main goal is to control the displacement of the pneumatic cylinder to reach any position or trajectory tracking in the shortest possible time and with the least steady state error. The results show that the Hammerstein-Wiener model identified for the system satisfactorily characterizes its nonlinear dynamics. The MPC is more efficient to control the system compared to the other controllers as it has less steady state error and stabilizes the system faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azahar, M.I.P., Irawan, A., Raja Ismail, R.M.T.: Self-tuning hybrid fuzzy sliding surface control for pneumatic servo system positioning. Control Eng. Pract. 113, 104838 (2021)

    Article  Google Scholar 

  2. Azira, A.R., Osman, K., Hammami, Sulaiman, S.F., Samsudin, S.I.: Predictive functional controller with reduced-order observer design for pneumatic positioning system. In: 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC), pp. 66–70 (2019)

    Google Scholar 

  3. Bogatu, L., Rizescu, C., Grămescu, B., Rizescu, D.: Innovative solutions for pneumatic positioning systems. In: Machado, J., Soares, F., Veiga, G. (eds.) HELIX 2018. LNEE, vol. 505, pp. 530–536. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91334-6_72

    Chapter  Google Scholar 

  4. Chacón, J., Vargas, H., Dormido, S., Sánchez, J.: Experimental study of nonlinear pid controllers in an air levitation system. IFAC-PapersOnLine 51(4), 304–309 (2018)

    Article  Google Scholar 

  5. Dong, J., Shi, J., Liu, C., Tianbiao, Y.: Research of pneumatic polishing force control system based on high speed on/off with pwm controlling. Robot. Comput.-Integr. Manuf. 70, 102133 (2021)

    Article  Google Scholar 

  6. Du, H., Liu, W., Bian, X., Xiong, W.: Energy-saving for industrial pneumatic actuation systems by exhausted air reuse based on a constant pressure elastic accumulator. Sustainability 14(6), 3535 (2022)

    Article  Google Scholar 

  7. Fan, C., Soon Hong, G., Zhao, J., Zhang, L., Zhao, J., Sun, L.: The integral sliding mode control of a pneumatic force servo for the polishing process. Precis. Eng. 55, 154–170 (2019)

    Article  Google Scholar 

  8. Fouad, G., Er-Wei, B.: Block-Oriented Nonlinear System Identification, vol. 1. Springer (2010)

    Google Scholar 

  9. Huilcapi, V., Blasco, X., Herrero, J.M., Reynoso-Meza, G.: A loop pairing method for multivariable control systems under a multi-objective optimization approach. IEEE Access 7, 81994–82014 (2019)

    Article  Google Scholar 

  10. Huilcapi, V., Blasco, X., Herrero, J.M., Reynoso-Meza, G.: A loop pairing method for non-linear multivariable control systems under a multi-objective optimization approach. IEEE Access 8, 41262–41281 (2020)

    Article  Google Scholar 

  11. Lafmejani, A.S., Masouleh, M.T., Kalhor, A.: Dynamic modeling, identification, and a comparative experimental study on position control of a pneumatic actuator based on soft switching and backstepping–sliding mode controllers. In: Backstepping Control of Nonlinear Dynamical Systems, pp. 261–289. Elsevier (2021). https://doi.org/10.1016/B978-0-12-817582-8.00019-2

    Chapter  Google Scholar 

  12. Lin, W., Dong, W., Deng, Y., Qian, C., Qiu, J.: Contact force modelling and adaptive control of pneumatic system. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 357–362. IEEE (2016)

    Google Scholar 

  13. Lin, W., Guan, R., Yuan, L., Li, Z., Tong, M.: Positionfeedback dynamic surface control for pneumatic actuator position servo system. Syst. Sci. Control Eng. 6(1), 388–397 (2018)

    Article  Google Scholar 

  14. Liu, Z., Yin, X., Peng, K., Wang, X., Chen, Q.: Soft pneumatic actuators adapted in multiple environments: a novel fuzzy cascade strategy for the dynamics control with hysteresis compensation. Mechatronics 84, 102797 (2022)

    Article  Google Scholar 

  15. Nikitin, A.A., Sorokin, E.A., Nikitina, T.N., Sokolov, D.A., Andreychikov, I.V.: Mathematical model of a single-acting pneumatic cylinder actuator. J. Phys.: Conf. Ser. 1889(4), 042079 (2021)

    Google Scholar 

  16. Osman, K., Mohd Faudzi, A.A., Rahmat, M.F., Mustafa, N.D., Abidin, A.F.Z., Suzumori, K.: Proportional-integrative controller design of Pneumatic system using particle swarm optimization. In: 2013 IEEE Student Conference on Research and Developement (2013), pp. 421–426

    Google Scholar 

  17. Ren, H.-P., Jiao, S.-S., Wang, X., Li, J.: Adaptive rbf neural network control method for pneumatic position servo system. IFAC-PapersOnLine 53(2), 8826–8831 (2020)

    Article  Google Scholar 

  18. Ren, H.-P., Wang, X., Fan, J.-T., Kaynak, O.: Adaptive backstepping control of a pneumatic system with unknown model parameters and control direction. IEEE Access 7, 64471–64482 (2019)

    Article  Google Scholar 

  19. Ren, H.-P., Wang, X., Fan, J.-T., Kaynak, O.: Fractional order sliding mode control of a pneumatic position servo system. J. Franklin Inst. 356(12), 6160–6174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saravanakumar, D., Mohan, B., Muthuramalingam, T.: A review on recent research trends in servo pneumatic positioning systems. Precis. Eng. 49, 481–492 (2017)

    Article  Google Scholar 

  21. Sulaiman, S.F., Rahmat, M.F., Faudzi, A.M., Osman, K.: Disturbance rejection using model predictive control for pneumatic actuator system. In: 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 285–290 (2016)

    Google Scholar 

  22. Szakacs, T.: A matlab/simulink® dynamic model of a pneumatic piston and system for industrial application. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–8 (2020)

    Google Scholar 

  23. Walker, J., et al.: Soft robotics: a review of recent developments of pneumatic soft actuators. In Actuators 9, 3 (2020)

    Article  Google Scholar 

  24. Zhao, L., Xia, Y., Yang, H., Zhang, J.: Sliding mode control. In: Pneumatic Servo Systems Analysis, pp. 71–84. Springer (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Huilcapi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huilcapi, V., Cajo, R., Orellana, J., Cascante, A. (2023). Nonlinear Identification and Position Control of a Pneumatic System. In: Robles-Bykbaev, V., Mula, J., Reynoso-Meza, G. (eds) Intelligent Technologies: Design and Applications for Society. CITIS 2022. Lecture Notes in Networks and Systems, vol 607. Springer, Cham. https://doi.org/10.1007/978-3-031-24327-1_11

Download citation

Publish with us

Policies and ethics