Skip to main content

Premature Infants

  • Chapter
  • First Online:
Frailty in Children

Abstract

Preterm birth is a leading cause of neonatal and childhood mortality worldwide. Advances in medical technologies and therapeutic perinatal and neonatal care have substantially improved the rates of survival among preterm infants, even at the lowest gestational ages. However, the functional and structural immaturity of preterm infants’ organs and systems is responsible for the development of multiple short- and long-term complications, which significantly contribute to the healthcare and socioeconomic burden of preterm birth. Among these complications, the most common include respiratory distress, bronchopulmonary dysplasia, persistent patency of the ductus arteriosus, necrotizing enterocolitis, brain injury, poor nutrition and growth, and sensorineural deficits. In turn, these conditions variously contribute to the development of adverse neurocognitive outcomes, with relevant long-term implications. This chapter aims to review the main risk factors associated with preterm birth, the clinical features of preterm infants, and the most frequent complications encountered in this frail population, highlighting the importance of a multidisciplinary approach and a long-term neurodevelopmental follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGA:

Adequate for gestational age

AREDF:

Absent or reversed end-diastolic flow

BPD:

Bronchopulmonary dysplasia

BSID:

Bayley Scales of Infant Development

BW:

Birth weight

CBF:

Cerebral blood flow

CHDs:

Congenital heart defects

COX:

Cyclooxygenase

CP:

Cerebral palsy

CPAP:

Continuous positive airway pressure

CRP:

C-Reactive protein

DA:

Ductus arteriosus

ELBW:

Extremely low birth weight

FiO2:

Fractional inspired oxygen

GA:

Gestational age

IUGR:

Intrauterine growth restriction

IVF:

In vitro fertilization

IVH:

Intraventricular hemorrhage

LBW:

Low birth weight

LGA:

Large for gestational age

LISA:

Less invasive surfactant administration

NEC:

Necrotizing enterocolitis

NICU:

Neonatal intensive care unit

NSAIDs:

Nonsteroidal anti-inflammatory drugs

PCA:

Postconceptional age

PDA:

Patent ductus arteriosus

PH:

Pulmonary hemorrhage

PHI:

Parenchymal hemorrhagic infarction

PHVD:

Posthemorrhagic ventricular dilatation

PROM:

Premature rupture of membranes

PVL:

Periventricular leukomalacia

PVR:

Pulmonary vascular resistance

RDS:

Respiratory distress syndrome

ROP:

Retinopathy of prematurity

SGA:

Small for gestational age

VEGF:

Vascular endothelial growth factor

VLBW:

Very low birth weight

References

  1. Harrison MS, Goldenberg RL. Global burden of prematurity. Semin Fetal Neonatal Med. 2016;21:74–9.

    Article  PubMed  Google Scholar 

  2. Walani SR. Global burden of preterm birth. Int J Gynaecol Obstet. 2020;150:31–3. https://doi.org/10.1002/IJGO.13195.

    Article  PubMed  Google Scholar 

  3. Frey HA, Klebanoff MA. The epidemiology, etiology, and costs of preterm birth. Semin Fetal Neonatal Med. 2016;21:68–73.

    Article  PubMed  Google Scholar 

  4. Stout MJ, Busam R, Macones GA, Tuuli MG. Spontaneous and indicated preterm birth subtypes: interobserver agreement and accuracy of classification. Am J Obstet Gynecol. 2014;211:530.e1–4. https://doi.org/10.1016/J.AJOG.2014.05.023.

    Article  PubMed  Google Scholar 

  5. Manuck TA. Racial and ethnic differences in preterm birth: a complex, multifactorial problem. Semin Perinatol. 2017;41:511–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ion R, Bernal AL. Smoking and preterm birth. Reprod Sci. 2015;22:918–26. https://doi.org/10.1177/1933719114556486.

    Article  CAS  PubMed  Google Scholar 

  7. Fan J, Lee BK, Wikman AT, Johansson S, Reilly M. Associations of rhesus and non-rhesus maternal red blood cell alloimmunization with stillbirth and preterm birth. Int J Epidemiol. 2014;43:1123–31. https://doi.org/10.1093/IJE/DYU079.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zur RL, Kingdom JC, Parks WT, Hobson SR. The placental basis of fetal growth restriction. Obstet Gynecol Clin N Am. 2020;47:81–98. https://doi.org/10.1016/J.OGC.2019.10.008.

    Article  Google Scholar 

  9. Ferrazzi E, Bozzo M, Rigano S, Bellotti M, Morabito A, Pardi G, Battaglia FC, Galan HL. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 2002;19:140–6. https://doi.org/10.1046/J.0960-7692.2002.00627.X.

    Article  CAS  PubMed  Google Scholar 

  10. Amiel-Tison C, Cabrol D, Denver R, Jarreau PH, Papiernik E, Piazza PV. Fetal adaptation to stress. Part I: acceleration of fetal maturation and earlier birth triggered by placental insufficiency in humans. Early Hum Dev. 2004;78:15–27. https://doi.org/10.1016/J.EARLHUMDEV.2004.03.002.

    Article  PubMed  Google Scholar 

  11. Matthiesen NB, Østergaard JR, Hjortdal VE, Henriksen TB. Congenital heart defects and the risk of spontaneous preterm birth. J Pediatr. 2021;229:168–174.e5. https://doi.org/10.1016/J.JPEDS.2020.09.059.

    Article  PubMed  Google Scholar 

  12. Cavoretto P, Candiani M, Giorgione V, Inversetti A, Abu-Saba MM, Tiberio F, Sigismondi C, Farina A. Risk of spontaneous preterm birth in singleton pregnancies conceived after IVF/ICSI treatment: meta-analysis of cohort studies. Ultrasound Obstet Gynecol. 2018;51:43–53. https://doi.org/10.1002/UOG.18930.

    Article  CAS  PubMed  Google Scholar 

  13. Vahanian SA, Lavery JA, Ananth CV, Vintzileos A. Placental implantation abnormalities and risk of preterm delivery: a systematic review and meta-analysis. Am J Obstet Gynecol. 2015;213:S78–90. https://doi.org/10.1016/J.AJOG.2015.05.058.

    Article  PubMed  Google Scholar 

  14. Nadeau HCG, Subramaniam A, Andrews WW. Infection and preterm birth. Semin Fetal Neonatal Med. 2016;21:100–5. https://doi.org/10.1016/J.SINY.2015.12.008.

    Article  PubMed  Google Scholar 

  15. Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P. Bacterial vaginosis as a risk factor for preterm delivery: a meta-analysis. Am J Obstet Gynecol. 2003;189:139–47. https://doi.org/10.1067/mob.2003.339.

    Article  PubMed  Google Scholar 

  16. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–7. https://doi.org/10.1056/NEJM200005183422007.

    Article  CAS  PubMed  Google Scholar 

  17. Knobel RB, Guenther BD, Rice HE. Thermoregulation and thermography in neonatal physiology and disease. Biol Res Nurs. 2011;13:274–82. https://doi.org/10.1177/1099800411403467.

    Article  PubMed  Google Scholar 

  18. De Almeida MFB, Guinsburg R, Sancho GA, Rosa IRM, Lamy ZC, Martinez FE, Da Silva RPGVC, Ferrari LSL, De Souza Rugolo LMS, Abdallah VOS, Silveira RDC. Hypothermia and early neonatal mortality in preterm infants. J Pediatr. 2014;164:271–5. https://doi.org/10.1016/j.jpeds.2013.09.049.

    Article  PubMed  Google Scholar 

  19. de Siqueira Caldas JP, Ferri WAG, Marba STM, Aragon DC, Guinsburg R, de Almeida MFB, Diniz EMA, Silveira RCS, Alves Junior JMS, Pavanelli MB, Bentlin MR, Ferreira DMLM, Vale MS, Fiori HH, Duarte JLMB, Meneses JA, Cwajg S, Carvalho WB, Ferrari LSL, Silva NMM, da Silva RPGVC, Anchieta LM, Santos JPF, Kawakami MD. Admission hypothermia, neonatal morbidity, and mortality: evaluation of a multicenter cohort of very low birth weight preterm infants according to relative performance of the center. Eur J Pediatr. 2019;178:1023–32. https://doi.org/10.1007/s00431-019-03386-9.

    Article  PubMed  Google Scholar 

  20. Whitsett JA, Weaver TE. Hydrophobic surfactant proteins in lung function and disease. N Engl J Med. 2002;347:2141–8. https://doi.org/10.1056/NEJMRA022387.

    Article  PubMed  Google Scholar 

  21. Nitta K, Kobayashi T. Impairment of surfactant activity and ventilation by proteins in lung edema fluid. Respir Physiol. 1994;95:43–51. https://doi.org/10.1016/0034-5687(94)90046-9.

    Article  CAS  PubMed  Google Scholar 

  22. Donn SM, Sinha SK. Minimising ventilator induced lung injury in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2006;91:226–30.

    Article  Google Scholar 

  23. Marseglia L, D’Angelo G, Granese R, Falsaperla R, Reiter RJ, Corsello G, Gitto E. Role of oxidative stress in neonatal respiratory distress syndrome. Free Radic Biol Med. 2019;142:132–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yadav S, Lee B, Kamity R. Neonatal respiratory distress syndrome. Treasure Island (FL): StatPearls Publishing; 2021.

    Google Scholar 

  25. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, Plavka R, Roehr CC, Saugstad OD, Simeoni U, Speer CP, Vento M, Visser GHA, Halliday HL. European consensus guidelines on the management of respiratory distress syndrome—2019 update. Neonatology. 2019;115:432–50.

    Article  PubMed  Google Scholar 

  26. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3(3):CD004454.

    PubMed  Google Scholar 

  27. Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2015;8(8):CD000144.

    PubMed  Google Scholar 

  28. Herting E, Härtel C, Göpel W. Less invasive surfactant administration (LISA): chances and limitations. Arch Dis Child Fetal Neonatal Ed. 2019;104:F655–9.

    Article  PubMed  Google Scholar 

  29. Kamath BD, MacGuire ER, McClure EM, Goldenberg RL, Jobe AH. Neonatal mortality from respiratory distress syndrome: lessons for low-resource countries. Pediatrics. 2011;127:1139–46. https://doi.org/10.1542/PEDS.2010-3212.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun H, Zhou Y, Xiong H, Kang W, Xu B, Liu D, Zhang X, Li H, Zhou C, Zhang Y, Zhou M, Meng Q. Prognosis of very preterm infants with severe respiratory distress syndrome receiving mechanical ventilation. Lung. 2015;193:249–54. https://doi.org/10.1007/S00408-014-9683-5.

    Article  PubMed  Google Scholar 

  31. Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100:145–57. https://doi.org/10.1002/BDRA.23235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bancalari E, Jain D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology. 2019;115:384–91. https://doi.org/10.1159/000497422.

    Article  PubMed  Google Scholar 

  33. Morty RE. Recent advances in the pathogenesis of BPD. Semin Perinatol. 2018;42:404–12. https://doi.org/10.1053/J.SEMPERI.2018.09.001.

    Article  PubMed  Google Scholar 

  34. Ehrenkranz RA. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116:1353–60. https://doi.org/10.1542/peds.2005-0249.

    Article  PubMed  Google Scholar 

  35. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV, Ryan RM, Kallapur SG, Steinhorn RH, Konduri GG, Davis SD, Thebaud B, Clyman RI, Collaco JM, Martin CR, Woods JC, Finer NN, Raju TNK. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sahni M, Mowes AK. Bronchopulmonary dysplasia. Treasure Island (FL): StatPearls Publishing; 2021.

    Google Scholar 

  37. Wu KY, Jensen EA, White AM, Wang Y, Biko DM, Nilan K, Fraga MV, Mercer-Rosa L, Zhang H, Kirpalani H. Characterization of disease phenotype in very preterm infants with severe bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2020;201:1398–406. https://doi.org/10.1164/rccm.201907-1342OC.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shah VS, Ohlsson A, Halliday HL, Dunn M. Early administration of inhaled corticosteroids for preventing chronic lung disease in very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017;1:CD001969. https://doi.org/10.1002/14651858.CD001969.PUB4.

    Article  PubMed  Google Scholar 

  39. Stewart A, Brion LP, Ambrosio-Perez I. Diuretics acting on the distal renal tubule for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;2011:CD001817. https://doi.org/10.1002/14651858.cd001817.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:227–32. https://doi.org/10.1053/j.semperi.2006.05.010.

    Article  PubMed  Google Scholar 

  41. Kiserud T. Physiology of the fetal circulation. Semin Fetal Neonatal Med. 2005;10:493–503. https://doi.org/10.1016/j.siny.2005.08.007.

    Article  PubMed  Google Scholar 

  42. Hamrick SEG, Hansmann G. Patent ductus arteriosus of the preterm infant. Pediatrics. 2010;125:1020–30.

    Article  PubMed  Google Scholar 

  43. Gonzalez A, Sosenko IRS, Chandar J, Hummler H, Claure N, Bancalari E. Influence of infection on patent ductus arteriosus and chronic lung disease in premature infants weighing 1000 g or less. J Pediatr. 1996;128:470–8. https://doi.org/10.1016/S0022-3476(96)70356-6.

    Article  CAS  PubMed  Google Scholar 

  44. Alyamac Dizdar E, Ozdemir R, Nur Sari F, Yurttutan S, Gokmen T, Erdeve O, Emre Canpolat F, Uras N, Suna Oguz S, Dilmen U. Low platelet count is associated with ductus arteriosus patency in preterm newborns. Early Hum Dev. 2012;88:813–6. https://doi.org/10.1016/j.earlhumdev.2012.05.007.

    Article  PubMed  Google Scholar 

  45. Sallmon H, Weber SC, Hüning B, Stein A, Horn PA, Metze BC, Dame C, Bührer C, Felderhoff-Müser U, Hansmann G, Koehne P. Thrombocytopenia in the first 24 h after birth and incidence of patent ductus arteriosus. Pediatrics. 2012;130:e623–30. https://doi.org/10.1542/peds.2012-0499.

    Article  PubMed  Google Scholar 

  46. Semberova J, Sirc J, Miletin J, Kucera J, Berka I, Sebkova S, O’Sullivan S, Franklin O, Stranak Z. Spontaneous closure of patent ductus arteriosus in infants ≤1500 g. Pediatrics. 2017;140:4258. https://doi.org/10.1542/peds.2016-4258.

    Article  Google Scholar 

  47. Deshpande P, Baczynski M, McNamara PJ, Jain A. Patent ductus arteriosus: the physiology of transition. Semin Fetal Neonatal Med. 2018;23:225–31. https://doi.org/10.1016/j.siny.2018.05.001.

    Article  PubMed  Google Scholar 

  48. Singh Y, Tissot C. Echocardiographic evaluation of transitional circulation for the neonatologists. Front Pediatr. 2018;6:140. https://doi.org/10.3389/fped.2018.00140.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Finnemore A, Groves A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015;20:210–6. https://doi.org/10.1016/j.siny.2015.04.003.

    Article  PubMed  Google Scholar 

  50. Sellmer A, Bjerre JV, Schmidt MR, McNamara PJ, Hjortdal VE, Høst B, Bech BH, Henriksen TB. Morbidity and mortality in preterm neonates with patent ductus arteriosus on day 3. Arch Dis Child Fetal Neonatal Ed. 2013;98:F505–10. https://doi.org/10.1136/archdischild-2013-303816.

    Article  PubMed  Google Scholar 

  51. Noori S, McCoy M, Friedlich P, Bright B, Gottipati V, Seri I, Sekar K. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics. 2009;123:e138–44. https://doi.org/10.1542/peds.2008-2418.

    Article  PubMed  Google Scholar 

  52. Schena F, Francescato G, Cappelleri A, Picciolli I, Mayer A, Mosca F, Fumagalli M. Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia. J Pediatr. 2015;166:1488–92. https://doi.org/10.1016/j.jpeds.2015.03.012.

    Article  PubMed  Google Scholar 

  53. Kluckow M, Evans N. Ductal shunting, high pulmonary blood flow, and pulmonary hemorrhage. J Pediatr. 2000;137:68–72. https://doi.org/10.1067/mpd.2000.106569.

    Article  CAS  PubMed  Google Scholar 

  54. Evans N, Kluckow M. Early ductal shunting and intraventricular haemorrhage in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996;75:F183–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Noori S, McCoy M, Anderson MP, Ramji F, Seri I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr. 2014;164:264–70. https://doi.org/10.1016/j.jpeds.2013.09.045.

    Article  PubMed  Google Scholar 

  56. de Boode WP. Individualized hemodynamic management in newborns. Front Pediatr. 2020;8:580470. https://doi.org/10.3389/fped.2020.580470.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ungerleider GD, Williams DA, Ungerleider RM. Patent ductus arteriosus. In: Critical heart disease in infants and children. Amsterdam: Elsevier; 2021. p. 536–43. https://doi.org/10.1016/B978-1-4557-0760-7.00043-7.

  58. Shelton EL, Singh GK, Nichols CG. Novel drug targets for ductus arteriosus manipulation: looking beyond prostaglandins. Semin Perinatol. 2018;42:221–7. https://doi.org/10.1053/j.semperi.2018.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev. 2013;2013(4):CD003481.

    Google Scholar 

  60. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013;21:201–32.

    Article  CAS  PubMed  Google Scholar 

  61. Martini S, Galletti S, Kelsall W, Angeli E, Agulli M, Gargiulo GD, Chen SE, Corvaglia L, Singh Y. Ductal ligation timing and neonatal outcomes: a 12-year bicentric comparison. Eur J Pediatr. 2021;180:2261–70. https://doi.org/10.1007/s00431-021-04004-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Volpe JJ. Intraventricular hemorrhage in the premature infant—current concepts. Part II. Ann Neurol. 1989;25:109–16. https://doi.org/10.1002/ana.410250202.

    Article  CAS  PubMed  Google Scholar 

  63. Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cimatti AG, Martini S, Galletti S, Vitali F, Aceti A, Frabboni G, Faldella G, Corvaglia L. Cerebral oxygenation and autoregulation in very preterm infants developing IVH during the transitional period: a pilot study. Front Pediatr. 2020;8:381. https://doi.org/10.3389/fped.2020.00381.

    Article  PubMed  PubMed Central  Google Scholar 

  65. O’Leary H, Gregas MC, Limperopoulos C, Zaretskaya I, Bassan H, Soul JS, Di Salvo DN, Du Plessis AJ. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics. 2009;124:302–9. https://doi.org/10.1542/peds.2008-2004.

    Article  PubMed  Google Scholar 

  66. Sortica da Costa C, Cardim D, Molnar Z, Kelsall W, Ng I, Czosnyka M, Smielewski P, Austin T. Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatr Res. 2019;86:247–53. https://doi.org/10.1038/s41390-019-0410-z.

    Article  PubMed  Google Scholar 

  67. Hoffman SB, Cheng YJ, Magder LS, Shet N, Viscardi RM. Cerebral autoregulation in premature infants during the first 96 hours of life and relationship to adverse outcomes. Arch Dis Child Fetal Neonatal Ed. 2019;104:F473–9. https://doi.org/10.1136/archdischild-2018-315725.

    Article  PubMed  Google Scholar 

  68. Pryds O, Greisen G, Lou H, Frils-Hansen B, Friis-Hansen B. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation. J Pediatr. 1989;115:638–45. https://doi.org/10.1016/s0022-3476(89)80301-4.

    Article  CAS  PubMed  Google Scholar 

  69. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1500 g. J Pediatr. 1978;92:529–34. https://doi.org/10.1016/S0022-3476(78)80282-0.

    Article  CAS  PubMed  Google Scholar 

  70. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Inder TE, Perlman JM, Volpe JJ. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. In: Volpe’s neurology of the newborn. Amsterdam: Elsevier; 2018. p. 637–98. https://doi.org/10.1016/B978-0-323-42876-7.00024-7.

  72. Valdez Sandoval P, Hernández Rosales P, Quiñones Hernández DG, Chavana Naranjo EA, García Navarro V. Intraventricular hemorrhage and posthemorrhagic hydrocephalus in preterm infants: diagnosis, classification, and treatment options. Childs Nerv Syst. 2019;35:917–27. https://doi.org/10.1007/S00381-019-04127-X.

    Article  PubMed  Google Scholar 

  73. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93:F153–61. https://doi.org/10.1136/adc.2006.108837.

    Article  CAS  PubMed  Google Scholar 

  74. Agut T, Alarcon A, Cabañas F, Bartocci M, Martinez-Biarge M, Horsch S, Agut T, Alarcon A, Arena R, Bartocci M, Bravo M, Cabañas F, Carreras N, Claris O, Dudink J, Fumagalli M, Govaert P, Horsch S, Parodi A, Pellicer A, Ramenghi L, Roehr CC, Steggerda S, Valverde E. Preterm white matter injury: ultrasound diagnosis and classification. Pediatr Res. 2020;87:37–49.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Alsaied A, Islam N, Thalib L. Global incidence of necrotizing enterocolitis: a systematic review and meta-analysis. BMC Pediatr. 2020;20:344. https://doi.org/10.1186/s12887-020-02231-5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Isani MA, Delaplain PT, Grishin A, Ford HR. Evolving understanding of neonatal necrotizing enterocolitis. Curr Opin Pediatr. 2018;30:417–23. https://doi.org/10.1097/MOP.0000000000000629.

    Article  PubMed  Google Scholar 

  77. Rose AT, Patel RM. A critical analysis of risk factors for necrotizing enterocolitis. Semin Fetal Neonatal Med. 2018;23(6):374–9. https://doi.org/10.1016/j.siny.2018.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mshvildadze M, Neu J, Shuster J, Theriaque D, Li N, Mai V. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr. 2010;156:20–5. https://doi.org/10.1016/j.jpeds.2009.06.063.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Watkins DJ, Besner GE. The role of the intestinal microcirculation in necrotizing enterocolitis. Semin Pediatr Surg. 2013;22:83–7. https://doi.org/10.1053/j.sempedsurg.2013.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Epelman M, Daneman A, Navarro OM, Morag I, Moore AM, Kim JH, Faingold R, Taylor G, Gerstle JT. Necrotizing enterocolitis: review of state-of-the-art imaging findings with pathologic correlation. Radiographics. 2007;27:285–305. https://doi.org/10.1148/rg.272055098.

    Article  PubMed  Google Scholar 

  81. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brotherton T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kliegman RM, Walsh MC. Neonatal necrotizing enterocolitis: pathogenesis, classification, and spectrum of illness. Curr Probl Pediatr. 1987;17:213–88.

    CAS  PubMed  Google Scholar 

  83. Papillon SC, Short SS, Ford HR. Necrotizing enterocolitis. In: Newborn surgery. 4th ed. Cham: Springer; 2021. p. 653–9. https://doi.org/10.4324/9781315113968.

  84. Henry MCW, Moss RL. Neonatal necrotizing enterocolitis. Semin Pediatr Surg. 2008;17:98–109. https://doi.org/10.1053/j.sempedsurg.2008.02.005.

    Article  PubMed  Google Scholar 

  85. Patel AL, Kim JH. Human milk and necrotizing enterocolitis. Semin Pediatr Surg. 2018;27:34–8. https://doi.org/10.1053/j.sempedsurg.2017.11.007.

    Article  PubMed  Google Scholar 

  86. Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2020;10:CD005496. https://doi.org/10.1002/14651858.CD005496.pub5.

    Article  PubMed  Google Scholar 

  87. Jones IH, Hall NJ. Contemporary outcomes for infants with necrotizing enterocolitis-a systematic review. J Pediatr. 2020;220:86–92.e3. https://doi.org/10.1016/j.jpeds.2019.11.011.

    Article  PubMed  Google Scholar 

  88. Ou J, Courtney CM, Steinberger AE, Tecos ME, Warner BW. Nutrition in necrotizing enterocolitis and following intestinal resection. Nutrients. 2020;12:520. https://doi.org/10.3390/nu12020520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hickey M, Georgieff M, Ramel S. Neurodevelopmental outcomes following necrotizing enterocolitis. Semin Fetal Neonatal Med. 2018;23:426–32.

    Article  PubMed  Google Scholar 

  90. Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013;74:35–49. https://doi.org/10.1038/pr.2013.205.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hellström A, Smith LEH, Dammann O. Retinopathy of prematurity. Lancet (London, England). 2013;382:1445–57. https://doi.org/10.1016/S0140-6736(13)60178-6.

    Article  CAS  PubMed  Google Scholar 

  92. Higgins RD. Oxygen saturation and retinopathy of prematurity. Clin Perinatol. 2019;46:593–9.

    Article  PubMed  Google Scholar 

  93. Fierson WM. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2018;142:e20183061. https://doi.org/10.1542/peds.2018-3061.

    Article  PubMed  Google Scholar 

  94. Brown AC, Nwanyanwu K. Retinopathy of prematurity. Treasure Island (FL): StatPearls Publishing; 2021.

    Google Scholar 

  95. Norman M, Hellström A, Hallberg B, Wallin A, Gustafson P, Tornqvist K, Håkansson S, Holmström G. Prevalence of severe visual disability among preterm children with retinopathy of prematurity and association with adherence to best practice guidelines. JAMA Netw Open. 2019;2:e186801. https://doi.org/10.1001/jamanetworkopen.2018.6801.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Duncan AF, Matthews MA. Neurodevelopmental outcomes in early childhood. Clin Perinatol. 2018;45:377–92.

    Article  PubMed  Google Scholar 

  97. Balasundaram P, Avulakunta ID. Bayley scales of infant and toddler development. Treasure Island (FL): StatPearls Publishing; 2020.

    Google Scholar 

  98. Jarjour IT. Neurodevelopmental outcome after extreme prematurity: a review of the literature. Pediatr Neurol. 2015;52:143–52.

    Article  PubMed  Google Scholar 

  99. Woythaler M. Neurodevelopmental outcomes of the late preterm infant. Semin Fetal Neonatal Med. 2019;24:54–9. https://doi.org/10.1016/J.SINY.2018.10.002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martini, S., Corvaglia, L. (2023). Premature Infants. In: Lima, M., Mondardini, M.C. (eds) Frailty in Children. Springer, Cham. https://doi.org/10.1007/978-3-031-24307-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24307-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24306-6

  • Online ISBN: 978-3-031-24307-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics