Skip to main content

Nullarbor

  • Chapter
  • First Online:
Australian Caves and Karst Systems

Part of the book series: Cave and Karst Systems of the World ((CAKASYWO))

  • 370 Accesses

Abstract

The Nullarbor Plain, the largest karst area in Australia (~190,000 km2), slopes very gently seawards, terminating abruptly in an 820 km long continuous cliff line. The semi-arid to very arid climate means the vast majority of the plain is treeless. The surface is covered by low parallel bedrock ridges believed to be the etched footprints of an extensive linear dune system. Some of the ~50 deep caves in the Nullarbor reach the water table and contain lakes of clear, salty, blue-green water, from which lead flooded collapse passages. Shallow caves are much more abundant (there may be perhaps 20,000), and are mostly narrow, smooth-walled vertical tubes called blowholes, because air blows in and out of them as the caves respond to changes in atmospheric pressure. Some of the larger shallow caves contain abundant dark brown to black calcite stalactites. Initial development of the deep caves probably occurred during the Oligocene; the blowholes are younger flank margin caves that formed along the mid-Miocene shoreline on the low gradient limestone platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alley, N.F., J.D.A. Clarke, M. Macphail, and E.M. Truswell. 1999. Sedimentary infillings and development of major Tertiary palaeodrainage systems of south-central Australia. Special Publications of the International Association of Sedimentologists 27: 337–366.

    Google Scholar 

  • Benbow, M.C., N.F. Alley, R.A. Callen, and D.R. Greenwood. 1995. Geological history and palaeoclimate. In Drexel J.F. and Preiss, W.V. (eds.), The Geology of South Australia, Volume 2, The Phanerozoic. South Australia Geological Survey Bulletin 54: 208–218.

    Google Scholar 

  • Blyth, A.J., J.S. Watson, J. Woodhead, and J. Hellstrom. 2010. Organic compounds preserved in a 2.9 million year old stalagmite from the Nullarbor Plain, Australia. Chemical Geology 279: 101–105.

    Google Scholar 

  • Bridge, P.J. 1973. Guano minerals from Murra-el-elevyn Cave, Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 39: 467.

    CAS  Google Scholar 

  • Bridge, P.J. 1977. Archerite, (K,NH4)H2PO4, a new mineral from Madura, Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 41: 33–35.

    Google Scholar 

  • Bridge, P.J., and R.M. Clarke. 1983. Mundrabillaite—A new cave mineral from Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 47: 80–81.

    CAS  Google Scholar 

  • Bureau of Meteorology 2017a. http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp.

  • Bureau of Meteorology 2017b http://www.bom.gov.au/jsp/ncc/climate_averages/evaporation/index.jsp. 6 c

  • Burnett, S., J.A. Webb, and S. White. 2013. Shallow caves and blowholes on the Nullarbor Plain, Australia—Flank margin caves on a low gradient limestone platform. Geomorphology 201: 246–253.

    Google Scholar 

  • Burnett, S., J.A. Webb, S. White, M. Lipar, M. Ferk, M. Barham, M. O’Leary, and F.S. Glover. 2020. Etched linear dunefields of the Nullarbor Plain; a record of Pliocene-Pleistocene wind patterns across southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 557: 109911.

    Google Scholar 

  • Buzzacott, P., and G. Skrzypek. 2021. Thermal anomaly and water origin in Weebubbie Cave, Nullarbor Karst Plain, Australia. Journal of Hydrology: Regional Studies 34: 100793.

    Google Scholar 

  • Caldwell, J., A.G. Davey, G.N. Jennings, and A.P. Spate. 1982. Colour in some Nullarbor Plain speleothems. Helictite 20: 3–10.

    Google Scholar 

  • Chen, X.Y., and C.E. Barton. 1991. Onset of aridity and dune-building in central Australia: Sedimentological and magnetostratigraphic evidence from Lake Amadeus. Palaeogeography, Palaeoclimatology, Palaeoecology 84: 55–73.

    Google Scholar 

  • Commander, D.P. 1991. Outline of the hydrogeology of the Eucla Basin. Proceedings of the International Conference on Groundwater in Large Sedimentary Basins, Perth, 1990, 70–78. Australian Government Publication Service, Canberra.

    Google Scholar 

  • Contos, A.K., J.M. James, B. Heywood, K. Pitt, and P. Rogers. 2001. Morphoanalysis of bacterially precipitated subaqueous calcium carbonate from Weebubbie Cave, Australia. Geomicrobiology Journal 8: 331–343.

    Google Scholar 

  • Contos, A.K. 2001. Biomineralisation in Caves. Unpublished PhD thesis, University of Sydney, Sydney, Australia.

    Google Scholar 

  • Davey, A.G., M.R. Gray, K.G. Grimes, E. Hamilton-Smith, J.M. James, and A.P. Spate. 1992. World heritage significance of karst and other landforms in the Nullarbor region. Report, Commonwealth of Australia: Department of the Arts, Sport, the Environment and Territories, Canberra, 202 pp.

    Google Scholar 

  • Delisser, E.A. 1865. Journal (manuscript). http://nla.gov.au/nla.obj-411378568.

  • Devine, P. 2003. Documentation and ground exploration of Nullarbor karst. In Proceedings of 24th Biennial Conference of the Australian Speleological Federation Inc., Bunbury, WA, 57–61.

    Google Scholar 

  • Doerr, S.H., R.R. Davies, A. Lewis, G. Pilkington, J.A. Webb, P.J. Ackroyd, and O. Bodger. 2011. Origin and karst geomorphological significance of the enigmatic Australian Nullarbor Plain ‘blowholes’. Earth Surface Processes and Landforms 37: 253–261.

    Google Scholar 

  • Dröllner, M., M. Barham, C.L. Kirkland, M. Danišík, J. Bourdet, M. Schulz, and M. Aspandiar. 2023. Directly dating Plio-Pleistocene climate change in the terrestrial record. Geophysical Research Letters 50: e2023GL102928.

    Google Scholar 

  • Dunkley, J.R. 1967. The geographical and historical background. In Caves of the Nullarbor, ed. J.R. Dunkley and T.M.L. Wigley, 1–12. Sydney: Speleological Research Council.

    Google Scholar 

  • Dunkley, J.R., and T.M.L. Wigley. 1967. Caves of the Nullarbor. Sydney: Speleological Research Council.

    Google Scholar 

  • Fujioka, T., and J. Chappell. 2010. History of Australian aridity; chronology in the evolution of arid landscapes. Geological Society Special Publications 346: 121–139.

    Google Scholar 

  • Gallus, A. 1971. Results of the exploration of Koonalda Cave, 1956–68. In Archaeology of the Gallus Site, ed. R.V.S. Wright, 8–133. Canberra: Australian Institute of Aboriginal Studies.

    Google Scholar 

  • Goede, A., R.S. Harmon, T.C. Atkinson, and P.J. Rowe. 1990. Pleistocene climatic change in southern Australia and its effect on speleothem deposition in some Nullarbor caves. Journal of Quaternary Science 5: 29–38.

    Google Scholar 

  • Goede, A., S. Harmon, T.C. Atkinson, and P.J. Rowe. 1992. A giant late Pleistocene halite speleothem from Webbs Cave, Nullarbor Plain, southeastern Western Australia. Helictite 33: 3–7.

    Google Scholar 

  • Grimes, K.G. 1974. Mesozoic and Cainozoic geology of the Lawn Hill, Westmoreland, Mornington, and Cape Van Dieman 1:250 000 sheet areas. Bureau of Mineral Resources Australia, Record 1974/106.

    Google Scholar 

  • Holmes, A.J., N.A. Tujula, M. Holley, A. Contos, J.M. James, P. Rogers, and M.R. Gillings. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environmental Microbiology 3(4): 256–264.

    Google Scholar 

  • Hosie, P. 2013. Roe Plains, WA. Olwolgin Cave revisited (Part 1). Caves Australia 194: 15–17.

    Google Scholar 

  • Hosie, P. 2014. Roe Plains, WA. Olwolgin Cave revisited (Part 2). Caves Australia 196: 13–16.

    Google Scholar 

  • Hou, B., L.A. Frakes, M. Sandiford, L. Worrall, J. Keeling, and N.F. Alley. 2008. Cenozoic Eucla Basin and associated palaeovalleys, southern Australia—Climatic and tectonic influences on landscape evolution, sedimentation and heavy mineral accumulation. Sedimentary Geology 203: 112–130.

    Google Scholar 

  • James, J.M. 1992. Corrosion par mélange des eaux dans les grottes de la Plaine de Nullarbor. In Karst et evolutions climatiques, ed. J.N. Salomon and R. Marie, 333–348. Bordeaux, France: Presses Universitaires de Bordeaux.

    Google Scholar 

  • James, N.P., and Y. Bone. 1991. Origin of a cool-water, Oligo-Miocene deep shelf limestone, Eucla Platform, southern Australia. Sedimentology 38: 323–341.

    Google Scholar 

  • James, N.P., Y. Bone, R.M. Carter, and C.V. Murray-Wallace. 2006. Origin of the Late Neogene Roe Plains and their calcarenite veneer: Implications for sedimentology and tectonics in the Great Australian Bight. Australian Journal of Earth Sciences 53: 407–419.

    Google Scholar 

  • Lipar, M., and M. Ferk. 2015. Karst pocket valleys and their implications on Pliocene-Quaternary hydrology and climate: Examples from the Nullarbor Plain, southern Australia. Earth-Science Reviews 150: 1–13.

    CAS  Google Scholar 

  • Lipar, M., and M. Ferk. 2022. Bihourly subterranean temperature and relative humidity data from the Nullarbor Plain, Australia (Nov 2019–Mar 2021). Data 2022 (7): 30. https://doi.org/10.3390/data7030030.

  • Lipar, M., M. Ferk, A. Šmuc, and M. Barham. 2022. Enigmatic annular landform on a Miocene planar karst surface, Nullarbor Plain, Australia. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.5459.

  • Lipar, M., M. Ferk, S. Lojen, and M. Barham. 2019. Sulfur (34S/32S) isotope composition of gypsum and implications for deep cave formation on the Nullarbor Plain, Australia. International Journal of Speleology 48: 1–9.

    Google Scholar 

  • Lowry, D.C. 1970. Geology of the Western Australian part of the Eucla Basin. Western Australia Geological Survey Bulletin 122: 1–201.

    Google Scholar 

  • Lowry, D.C., and J.N. Jennings. 1974. The Nullarbor karst, Australia. Zeitschrift Für Geomorphologie 18: 35–81.

    Google Scholar 

  • MacKenzie, A. 1995. Chemical Investigations into the black calcite of the Nullarbor Plain. Unpublished BSc (Hons) thesis, University of Sydney, Sydney, Australia.

    Google Scholar 

  • Matley, K.A., J.M.K. Sniderman, A.N. Drinnan, and J.C. Hellstrom. 2020. Late-Holocene environmental change on the Nullarbor Plain, southwest Australia, based on speleothem pollen records. The Holocene 30: 672–681.

    Google Scholar 

  • Miller, C.R., N.P. James, and Y. Bone. 2012. Prolonged carbonate diagenesis under an evolving Late Cenozoic climate; Nullarbor Plain, southern Australia. Sedimentary Geology 261–262: 33–49.

    Google Scholar 

  • Milner, S.J., R.D. Short, and A.W. Campbell. 2017. Exploration of the cliff caves of the Nullarbor. In Moore K. and White S. (eds.), Proceedings of the 17th International Congress of Speleology, Sydney, Australia, 1: 326–329. Australian Speleological Federation, Sydney.

    Google Scholar 

  • O’Connell, L.G., N.P. James, and Y. Bone. 2012. The Miocene Nullarbor Limestone, southern Australia; deposition on a vast subtropical epeiric platform. Sedimentary Geology 253: 1–16.

    Google Scholar 

  • Poulter, N. 2018. Weebubbie Cave, Nullarbor Plain, Western Australia; In danger of collapse? Caves Australia 206: 24–27.

    Google Scholar 

  • Poulter, N. 2020. Prostate Pit 6N–1369, Nullarbor Plain. Caves Australia 211: 22–27.

    Google Scholar 

  • Prazak, B. and S. Eberhard. 2020. Above the Nullarbor. Caves Australia 211, 19–21.

    Google Scholar 

  • Prideaux, G.J., J.A. Long, L.K. Ayliffe, J.C. Hellstrom, B. Pillans, W.E. Boles, M.N. Hutchinson, R.G. Roberts, M.L. Cupper, L.J. Arnold, P.D. Devine, and N.M. Warburton. 2007a. An arid-adapted middle Pleistocene fauna from south-central Australia. Nature 445: 422–425.

    CAS  Google Scholar 

  • Prideaux, G., R. Roberts, D. Megirian, K. Westaway, J. Hellstrom, and J. Olley. 2007b. Mammalian responses to Pleistocene climate change in southeastern Australia. Geology 35: 33–36.

    Google Scholar 

  • Roberts, R.G., N.A. Spooner, R. Jones, S. Cane, J.M. Olley, A.S. Murray, and M.J. Head. 1996. Preliminary luminescence dates for archaeological sediments on the Nullarbor Plain, South Australia. Australian Archaeology 42: 7–16.

    Google Scholar 

  • Rowling. J. 2007. Lake speleothems of the Nullarbor. In Proceedings of 26th Biennial Conference of the Australian Speleological Federation Inc., Mt Gambier, SA, 8, 1–15.

    Google Scholar 

  • Ryan, K., B. Page, R. Brandle, J. Jay, H. Ehmann, and D. Armstrong, 2012. Trends in the biodiversity of the Nullarbor region: A comparison between 1984 and 2012. Government of South Australia, Department of Environment, Water and Natural Resources, Adelaide.

    Google Scholar 

  • Sandiford, M. 2007. The tilting continent; a new constraint on the dynamic topographic field from Australia. Earth and Planetary Science Letters 261: 152–163.

    CAS  Google Scholar 

  • Sellmann, S., M. Quigley, B. Duffy, H. Yang, and D. Clark. 2023. Fault geometry and slip rates from the Nullarbor and Roe Plains of south‐central Australia: insights into the spatial and temporal characteristics of intraplate seismicity. Earth Surface Processes and Landforms 48: 350–370.

    Google Scholar 

  • Smith, D.I. 1989. Carbonate aquifers in Australia—A review. In Resource management in limestone landscapes—International perspectives: Special Publication Department of Geography and Oceanography, ed. D. Gillieson and D.I. Smith, 15–41. Canberra: Australian Defence Force Academy.

    Google Scholar 

  • Sniderman, J.M.K., J.D. Woodhead, J. Hellstrom, G.J. Jordan, R.N. Drysdale, J.J. Tyler, and N. Porch. 2016. Pliocene reversal of late Neogene aridification. Proceedings of the National Academy of Sciences 113: 1999–2004.

    Google Scholar 

  • Spate, A., D. Gillieson, and J. Jennings. 1984. Red sands of the Nullarbor, a preliminary note. In Proceedings of 14th Biennial Conference of the Australian Speleological Federation Inc., Adelaide, SA, 61–66.

    Google Scholar 

  • Spohn, M., and S. Holzheu. 2021. Temperature controls diel oscillation of the CO2 concentration in a desert soil. Biogeochemistry 156: 279–292.

    CAS  Google Scholar 

  • Tanh, L. 2021. Quantifying and modeling the surficial karst of the Nullarbor Plain (southern Australia). Unpublished MSc thesis, University of Miami, USA.

    Google Scholar 

  • Tetu, S., K. Breakwell, L. Elbourne, A.J. Holmes, M.R. Gillings, and I.T. Paulsen. 2013. Life in the dark: Metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. The ISME Journal 7: 1227–1236.

    CAS  Google Scholar 

  • Wakelin-King, G.A., and J.A. Webb. 2020. Origin, geomorphology and geoheritage potential of Australia’s longest coastal cliff lines. Australian Journal of Earth Sciences 67: 649–661.

    CAS  Google Scholar 

  • Walshe, K. 2017. Koonalda Cave, Nullarbor Plain, South Australia—Issues in optical and radiometric dating of deep karst caves. Geochronometria 44: 366–373.

    Google Scholar 

  • Waltham, T., 2008. Great Caves of the World. Natural History Museum.

    Google Scholar 

  • Webb, J.A. 2017. Denudation history of the Southeastern Highlands of Australia. Australian Journal of Earth Sciences 64: 841–850.

    CAS  Google Scholar 

  • Webb, J.A., and J.M. James. 2006. Karst evolution of the Nullarbor Plain, Australia. In Harmon, R.S. and Wicks, C. (eds.), Perspectives on karst geomorphology, hydrology, and geochemistry—A tribute volume to Derek C. Ford and William B. White, Geological Society of America Special Paper 404, 65–78.

    Google Scholar 

  • Webb, J.A., and S. White. 2013. Karst in deserts. In Treatise on geomorphology 6, ed. J.F. Shroder and A. Frumkin, 397–406. Academic Press.

    Google Scholar 

  • Webb, J.A., K.G. Grimes, and A. Osborne. 2003. Black Holes: Caves in the Australian Landscape. In Beneath the surface: A natural history of Australian caves, ed. B.L. Finlayson and E. Hamilton-Smith, 1–52. Sydney: University of New South Wales Press Ltd.

    Google Scholar 

  • Webb, R. 1991. Stegamites—A form of cave shield? Proceedings of 18th Biennial Conference of the Australian Speleological Federation Inc., Margaret River, WA, 95–98.

    Google Scholar 

  • White, N., K. Boland, D. Carr, and G. Leeder. 2017. Exploring for new caves on the Nullarbor Plain, Australia. In Moore K. and White S. (eds.), Proceedings of the 17th International Congress of Speleology, Sydney, Australia, 2: 360–362. Australian Speleological Federation Inc, Sydney.

    Google Scholar 

  • Wight, A. 1990. Nullarbor blue. Australian Geographic 19: 72–89.

    Google Scholar 

  • Wigley, T.M.L., and I.D. Wood. 1967. Meteorology of the Nullarbor Plain caves. In Caves of the Nullarbor, ed. J.R. Dunkley and T.M.L. Wigley, 32–34. Sydney: The Speleological Research Council Ltd.

    Google Scholar 

  • Woodhead, J., J.M.K. Sniderman, J. Hellstrom, R.N. Drysdale, R. Maas, N. White, S. White, and P. Devine. 2019. The antiquity of Nullarbor speleothems and implications for karst palaeoclimate archives. Scientific Report 9: 603.

    Google Scholar 

  • Worthington, S.R.H. 2001. Depth of conduit flow in unconfined carbonate aquifers. Geology 29: 335–338.

    CAS  Google Scholar 

  • Yang, H., S. Sellmann, and M. Quigley. 2022. Fluid-enhanced neotectonic faulting in the cratonic lithosphere of the Nullarbor Plain in South-Central Australia. Geophysical Research Letters 49: e2022GL099155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webb, J.A., James, J.M. (2023). Nullarbor. In: Webb, J., White, S., Smith, G.K. (eds) Australian Caves and Karst Systems. Cave and Karst Systems of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-24267-0_11

Download citation

Publish with us

Policies and ethics