Abstract
The aim of the present text is to provide some basics around Reshetnyak’s theory of subharmonic distances on surfaces, together with an overview of the main results. While subharmonic distances are often confused with two-dimensional manifolds of bounded curvature, we present them as a complete autonomous theory. In turn, there is no specific prerequisite for the present text.
Keywords
- Subharmonic metrics
- Alexandrov surfaces
- Conformal metrics
- Curves of bounded rotation
- Plane potential theory
- Riemann surfaces
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
The term “Alexandrov surface” is equivocal in the literature. Sometimes, it means a two-dimensional manifold of bounded curvature; sometimes it means a metric surface with a curvature bound in the sense of Alexandrov and sometimes a metric surface with a lower curvature bound. In turn, we will not use further this terminology.
- 3.
- 4.
- 5.
Intrinsic metric space may also be called inner or internal.
- 6.
This theorem is called Metrics Convergence Theorem in Reshetnyak articles, as the definitions do not fit with ours, see the introduction.
- 7.
- 8.
The following alternative terminologies are also used for contracting mapping: inextensible, non-extensible, non-expansive, short, and metric.
- 9.
On page 96 in [92], “Theorem 6.3.2” should be read “Theorem 6.2.2.”
- 10.
The following argument was suggested to the author by Alexander Lytchak.
- 11.
Here and in similar statements, the distance that is approximated is the induced intrinsic distance over the neighborhood.
- 12.
Here also, the distance over the neighborhood is the induced intrinsic distance. Actually, a stronger result is stated in [84] (Chap. 7), namely that the interior of any neighborhood homeomorphic to a closed disc has isothermal coordinates, see Corollary 4.160. In [84] (Chap. 7), a stronger (smooth) version of Theorem 4.165 is stated and used.
- 13.
In [11], what we are calling turn was translated by rotation; see the Introduction of the present article.
- 14.
- 15.
- 16.
- 17.
References
Adamowicz, T., Veronelli, G.: Isoperimetric inequalities and geometry of level curves of harmonic functions on smooth and singular surfaces. Calc. Var. Partial Differential Equations 61(1), Paper No. 2, 30 (2022). https://doi.org/10.1007/s00526-021-02109-z
Ahlfors, L.V.: Lectures on quasiconformal mappings, University Lecture Series, vol. 38, second edn. American Mathematical Society, Providence, RI (2006). https://doi.org/10.1090/ulect/038. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard
Ahlfors, L.V., Sario, L.: Riemann surfaces. Princeton Mathematical Series, No. 26. Princeton University Press, Princeton, N.J. (1960)
Alexander, S., Kapovitch, V., Petrunin, A.: Alexandrov geometry: preliminary version no. 1. arXiv e-prints arXiv:1903.08539 (2019)
Alexander, S., Kapovitch, V., Petrunin, A.: An invitation to Alexandrov geometry. SpringerBriefs in Mathematics. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05312-3. CAT(0) spaces
Alexandrov, A.D.: Über eine Verallgemeinerung der Riemannschen Geometrie. Schr. Forschungsinst. Math. 1, 33–84 (1957)
Alexandrov, A.D.: A. D. Alexandrov selected works. Part II. Chapman & Hall/CRC, Boca Raton, FL (2006). Intrinsic geometry of convex surfaces, Edited by S. S. Kutateladze, Translated from the Russian by S. Vakhrameyev
Alexandrov, A.D.: On the surfaces representable as difference of convex functions [translation of mr0048059]. Sib. Èlektron. Mat. Izv. 9, 360–376 (2012)
Alexandrov, A.D., Reshetnyak, Y.G.: General theory of irregular curves, Mathematics and its Applications (Soviet Series), vol. 29. Kluwer Academic Publishers Group, Dordrecht (1989). https://doi.org/10.1007/978-94-009-2591-5. Translated from the Russian by L. Ya. Yuzina
Alexandrov, A.D., Zalgaller, V.A. (eds.): Two-dimensional manifolds of bounded curvature. Proceedings of the Steklov Institute of Mathematics, No. 76 (1965). American Mathematical Society, Providence, R.I. (1965). Translated from the Russian by J. M. Danskin
Alexandrov, A.D., Zalgaller, V.A.: Intrinsic geometry of surfaces. Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 15. American Mathematical Society, Providence, R.I. (1967)
Ambrosio, L., Bertrand, J.: On the regularity of Alexandrov surfaces with curvature bounded below. Anal. Geom. Metr. Spaces 4(1), 282–287 (2016). https://doi.org/10.1515/agms-2016-0012
Ambrosio, L., Bertrand, J.: DC calculus. Math. Z. 288(3–4), 1037–1080 (2018). https://doi.org/10.1007/s00209-017-1926-8
Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)
Ambrosio, L., Tilli, P.: Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, vol. 25. Oxford University Press, Oxford (2004)
Armitage, D.H., Gardiner, S.J.: Classical potential theory. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London (2001). https://doi.org/10.1007/978-1-4471-0233-5
Arsove, M.G.: Functions representable as differences of subharmonic functions. Trans. Amer. Math. Soc. 75, 327–365 (1953). https://doi.org/10.2307/1990736
Ash, R.B.: Measure, integration, and functional analysis. Academic Press, New York-London (1972)
Bak, J., Newman, D.J.: Complex analysis, third edn. Undergraduate Texts in Mathematics. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7288-0
Bartle, R.G., Joichi, J.T.: The preservation of convergence of measurable functions under composition. Proc. Amer. Math. Soc. 12, 122–126 (1961). https://doi.org/10.2307/2034137
Bartolucci, D., Castorina, D.: On a singular Liouville-type equation and the Alexandrov isoperimetric inequality. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1), 35–64 (2019)
Beardon, A.F.: A primer on Riemann surfaces, London Mathematical Society Lecture Note Series, vol. 78. Cambridge University Press, Cambridge (1984)
Beckenbach, E.F., Radó, T.: Subharmonic functions and surfaces of negative curvature. Trans. Amer. Math. Soc. 35(3), 662–674 (1933). https://doi.org/10.2307/1989854
Bonahon, F.: Low-dimensional geometry, Student Mathematical Library, vol. 49. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ (2009). https://doi.org/10.1090/stml/049. From Euclidean surfaces to hyperbolic knots, IAS/Park City Mathematical Subseries
Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin (1999). https://doi.org/10.1007/978-3-662-12494-9
Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001). https://doi.org/10.1090/gsm/033
Burago, Y.: On proportional approximation of a metric. Trudy Mat. Inst. Steklov. 76, 120–123 (1965). English translation in [10]
Burago, Y.: Bi-Lipschitz-equivalent Aleksandrov surfaces. II. Algebra i Analiz 16(6), 28–52 (2004). https://doi.org/10.1090/S1061-0022-05-00885-X
Burago, Y., Buyalo, S.: Metrics with upper-bounded curvature on 2-polyhedra. II. Algebra i Analiz 10(4), 62–112 (1998)
Burago, Y.D.: The closure of a class of manifolds with bounded curvature. Trudy Mat. Inst. Steklov. 76, 141–147 (1965). English translation in [10]
do Carmo, M.P.: Differential geometry of curves & surfaces. Dover Publications, Inc., Mineola, NY (2016). Revised & updated second edition of [ MR0394451]
Cartan, H.: Théorie du potentiel Newtonien: énergie, capacité, suites de potentials. Bull. Soc. Math. France 73, 74–106 (1945)
Cassorla, M.: Approximating compact inner metric spaces by surfaces. Indiana Univ. Math. J. 41(2), 505–513 (1992). https://doi.org/10.1512/iumj.1992.41.41029
Chen, J., Li, Y.: Uniform convergence of metrics on Alexandrov surfaces with bounded integral curvature (2022). https://doi.org/10.48550/arXiv.2208.05620
Chern, S.s.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Amer. Math. Soc. 6, 771–782 (1955). https://doi.org/10.2307/2032933
Chern, S.s., Hartman, P., Wintner, A.: On isothermic coordinates. Comment. Math. Helv. 28, 301–309 (1954). https://doi.org/10.1007/BF02566936
Chirka, E.M.: Potentials on a compact Riemann surface. Tr. Mat. Inst. Steklova 301(Kompleksnyı̆ Analiz, Matematicheskaya Fizika i Prilozheniya), 287–319 (2018). https://doi.org/10.1134/S0371968518020218
Chowdhury, S., Hu, H., Romney, M., Tsou, A.: On cat(k) surfaces (2022)
Creutz, P., Romney, M.: Triangulating metric surfaces. Proc. Lond. Math. Soc. (2022). https://doi.org/10.1112/plms.12486
Dacorogna, B.: Introduction to the calculus of variations, second edn. Imperial College Press, London (2009). Translated from the 1992 French original
Debin, C.: A compactness theorem for surfaces with bounded integral curvature. J. Inst. Math. Jussieu 19(2), 597–645 (2020). https://doi.org/10.1017/s1474748018000154
Demailly, J.P.: Complex analytic and differential geometry. Author’s website (2012)
Donaldson, S.: Riemann surfaces, Oxford Graduate Texts in Mathematics, vol. 22. Oxford University Press, Oxford (2011). https://doi.org/10.1093/acprof:oso/9780198526391.001.0001
Dudley, R.M.: On second derivatives of convex functions. Math. Scand. 41(1), 159–174 (1977). https://doi.org/10.7146/math.scand.a-11710
Dudley, R.M.: Acknowledgment of priority: “On second derivatives of convex functions” [Math. Scand. 41 (1977), no. 1, 159–174; MR 58 #2250]. Math. Scand. 46(1), 61 (1980). https://doi.org/10.7146/math.scand.a-11851
Falconer, K.: Fractal geometry, third edn. John Wiley & Sons, Ltd., Chichester (2014). Mathematical foundations and applications
Falconer, K.J.: The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1986)
Farb, B., Margalit, D.: A primer on mapping class groups, Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton, NJ (2012)
Farkas, H.M., Kra, I.: Riemann surfaces, Graduate Texts in Mathematics, vol. 71, second edn. Springer-Verlag, New York (1992). https://doi.org/10.1007/978-1-4612-2034-3
Folland, G.B.: Real analysis, second edn. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York (1999). Modern techniques and their applications, A Wiley-Interscience Publication
Forster, O.: Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81. Springer-Verlag, New York (1991). Translated from the 1977 German original by Bruce Gilligan, Reprint of the 1981 English translation
Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence, RI (2000)
Hartman, P.: On functions representable as a difference of convex functions. Pacific J. Math. 9, 707–713 (1959). http://projecteuclid.org/euclid.pjm/1103039111
Hartman, P., Wintner, A.: On uniform Dini conditions in the theory of linear partial differential equations of elliptic type. Amer. J. Math. 77, 329–354 (1955). https://doi.org/10.2307/2372534
Hayman, W.K., Kennedy, P.B.: Subharmonic functions. Vol. I. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York (1976). London Mathematical Society Monographs, No. 9
Hoffmann-Jørgensen, J.: Measures which agree on balls. Math. Scand. 37(2), 319–326 (1975). https://doi.org/10.7146/math.scand.a-11610
Hörmander, L.: The analysis of linear partial differential operators. II. Classics in Mathematics. Springer-Verlag, Berlin (2005). https://doi.org/10.1007/b138375. Differential operators with constant coefficients, Reprint of the 1983 original
Huber, A.: Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie. Comment. Math. Helv. 34, 99–126 (1960). https://doi.org/10.1007/BF02565931
Hulin, D., Troyanov, M.: Prescribing curvature on open surfaces. Math. Ann. 293(2), 277–315 (1992). https://doi.org/10.1007/BF01444716
Imomkulov, S.A.: Twice differentiability of subharmonic functions. Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 877–888 (1992). https://doi.org/10.1070/IM1993v041n01ABEH002184
Izmestiev, I.: A simple proof of an isoperimetric inequality for Euclidean and hyperbolic cone-surfaces. Differential Geom. Appl. 43, 95–101 (2015). https://doi.org/10.1016/j.difgeo.2015.09.007
Jost, J.: Postmodern analysis, third edn. Universitext. Springer-Verlag, Berlin (2005)
Jost, J.: Compact Riemann surfaces, third edn. Universitext. Springer-Verlag, Berlin (2006). https://doi.org/10.1007/978-3-540-33067-7. An introduction to contemporary mathematics
Jost, J.: Riemannian geometry and geometric analysis, sixth edn. Universitext. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21298-7
Kapovich, M.: Hyperbolic manifolds and discrete groups. Modern Birkhäuser Classics. Birkhäuser Boston, Ltd., Boston, MA (2009). https://doi.org/10.1007/978-0-8176-4913-5. Reprint of the 2001 edition
Kokarev, G.: Curvature and bubble convergence of harmonic maps. J. Geom. Anal. 23(3), 1058–1077 (2013). https://doi.org/10.1007/s12220-011-9273-1
Landkof, N.S.: Foundations of modern potential theory. Springer-Verlag, New York-Heidelberg (1972). Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180
Lehto, O., Virtanen, K.I.: Quasiconformal mappings in the plane, second edn. Springer-Verlag, New York-Heidelberg (1973). Translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126
Lytchak, A., Wenger, S.: Isoperimetric characterization of upper curvature bounds. Acta Math. 221(1), 159–202 (2018). https://doi.org/10.4310/ACTA.2018.v221.n1.a5
Mattila, P.: Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511623813. Fractals and rectifiability
Men’shov, D.E.: Sur une généralisation d’un théorème de M. H. Bohr. Rec. Math. Moscou, n. Ser. 2, 339–354 (1937)
Milnor, J.W.: On the total curvature of knots. Ann. of Math. (2) 52, 248–257 (1950). https://doi.org/10.2307/1969467
Natanson, I.P.: Theory of functions of a real variable. Frederick Ungar Publishing Co., New York (1955). Translated by Leo F. Boron with the collaboration of Edwin Hewitt
Nikolaev, I.: Foliations on surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 41. Springer-Verlag, Berlin (2001). https://doi.org/10.1007/978-3-662-04524-4. With a foreword by Idel Bronshteyn and Chapter 16 by B. Piccoli
Papadopoulos, A.: Metric spaces, convexity and non-positive curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6, second edn. European Mathematical Society (EMS), Zürich (2014). https://doi.org/10.4171/132
Perelman, G.: DC structure on Alexandrov space. Preprint, 1994
Pogorelov, A.V.: Extrinsic geometry of convex surfaces. Translations of Mathematical Monographs, Vol. 35. American Mathematical Society, Providence, R.I. (1973). Translated from the Russian by Israel Program for Scientific Translations
Pokorný, D., Rataj, J., Zajíček, L.: On the structure of WDC sets. Math. Nachr. 292(7), 1595–1626 (2019). https://doi.org/10.1002/mana.201700253
Radó, T.: On the problem of Plateau. Subharmonic functions. Springer-Verlag, New York-Heidelberg (1971). Reprint
Radon, J.: Über die Randwertaufgaben beim logarithmischen Potential. Anzeiger Wien 56, 190 (1919)
Ransford, T.: Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511623776
Rao, M.: Brownian motion and classical potential theory. Matematisk Institut, Aarhus University, Aarhus (1977). Lecture Notes Series, No. 47
Reshetnyak, Y.G.: Study of manifolds of bounded curvature using isothermal coordinates. Izvestiia Sibirskogo otdeleniia Akademii nauk SSSR (1959)
Reshetnyak, Y.G.: Isothermal coordinates on manifolds of bounded curvature I. Sibirsk. Mat. Ž. 1, 88–116 (1960)
Reshetnyak, Y.G.: Isothermal coordinates on manifolds of bounded curvature II. Sibirsk. Mat. Ž. 1, 248–276 (1960)
Reshetnyak, Y.G.: On a special mapping of a cone onto a polyhedron. Mat. Sb. (N.S.) 53 (95), 39–52 (1961)
Reshetnyak, Y.G.: On isoperimetric property of two dimensional manifolds with curvature bounded from above by K. Vestnik Leningrad. Univ. 16(19), 58–76 (1961)
Reshetnyak, Y.G.: On a special mapping of a cone in a manifold of bounded curvature. Sibirsk. Mat. Ž. 3, 256–272 (1962)
Reshetnyak, Y.G.: Arc length in a manifold of bounded curvature with an isothermal metric. Sibirsk. Mat. Ž. 4, 212–226 (1963)
Reshetnyak, Y.G.: Turn of curves in a manifold of bounded curvature with isothermal metric. Sibirsk. Mat. Ž. 4, 870–911 (1963)
Reshetnyak, Y.G.: Non-expansive maps in a space of curvature no greater than k. Sibirsk. Mat. Ž. 9, 918–927 (1968)
Reshetnyak, Y.G.: Two-dimensional manifolds of bounded curvature. In: Geometry, IV, Encyclopaedia Math. Sci., vol. 70, pp. 3–163, 245–250. Springer, Berlin (1993)
Reshetnyak, Y.G.: On the conformal representation of Alexandrov surfaces. In: Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, pp. 287–304. Univ. Jyväskylä, Jyväskylä (2001)
Reshetnyak, Y.G.: The theory of curves in differential geometry from the point of view of the theory of functions of a real variable. Uspekhi Mat. Nauk 60(6(366)), 157–174 (2005). https://doi.org/10.1070/RM2005v060n06ABEH004286
Reshetnyak, Y.G.: Personal communication (2021)
Richard, T.: Canonical smoothing of compact Aleksandrov surfaces via Ricci flow. Ann. Sci. Éc. Norm. Supér. (4) 51(2), 263–279 (2018). https://doi.org/10.24033/asens.2356
Roberts, A.W., Varberg, D.E.: Convex functions. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1973). Pure and Applied Mathematics, Vol. 57
Royden, H.L.: Function theory on compact Riemann surfaces. J. Analyse Math. 18, 295–327 (1967). https://doi.org/10.1007/BF02798051
Rudin, W.: Real and complex analysis, third edn. McGraw-Hill Book Co., New York (1987)
Schwartz, L.: Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966)
Spivak, M.: A comprehensive introduction to differential geometry. Vol. III, second edn. Publish or Perish, Inc., Wilmington, Del. (1979)
Stratilatova, M.B.: Area in two-dimensional manifolds of bounded curvature as Hausdorff measure. Vestnik Leningrad. Univ. 17(13), 56–60 (1962)
Sullivan, J.M.: Curves of finite total curvature. In: Discrete differential geometry, Oberwolfach Semin., vol. 38, pp. 137–161. Birkhäuser, Basel (2008)
Szpilrajn, E.: Remarques sur les fonctions sousharmoniques. Ann. of Math. (2) 34(3), 588–594 (1933). https://doi.org/10.2307/1968179
Troyanov, M.: Les surfaces euclidiennes à singularités coniques. Enseign. Math. (2) 32(1–2), 79–94 (1986)
Troyanov, M.: Un principe de concentration-compacité pour les suites de surfaces riemanniennes. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(5), 419–441 (1991). https://doi.org/10.1016/S0294-1449(16)30255-4
Troyanov, M.: Surfaces riemanniennes à singularités simples. In: Differential geometry. Part 2: Geometry in mathematical physics and related topics. Proceedings of a summer research institute, held at the University of California, Los Angeles, CA, USA, July 8–28, 1990, pp. 619–628. Providence, RI: American Mathematical Society (1993)
Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, pp. 507–540. Eur. Math. Soc., Zürich (2007). https://doi.org/10.4171/029-1/13
Troyanov, M.: Les surfaces à courbure intégrale bornée au sens d’Alexandrov. In: Géométrie discrète, algorithmique, différentielle et arithmétique, pp. 1–18. Société Mathématique de France (2009)
Tsuji, M.: Potential theory in modern function theory. Chelsea Publishing Co., New York (1975). Reprinting of the 1959 original
Wintner, A.: On the local role of the theory of the logarithmic potential in differential geometry. Amer. J. Math. 75, 679–690 (1953). https://doi.org/10.2307/2372542
Zalgaller, V.A.: Curves on a surface near a point of the spike type. Trudy Mat. Inst. Steklov. 76, 64–66 (1965). English translation in [10]
Acknowledgements
The author is very grateful to Alexander Lytchak for his comments, which significantly enhanced the interest and the presentation of the present text.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Fillastre, F. (2023). An Introduction to Reshetnyak’s Theory of Subharmonic Distances. In: Fillastre, F., Slutskiy, D. (eds) Reshetnyak's Theory of Subharmonic Metrics. Springer, Cham. https://doi.org/10.1007/978-3-031-24255-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-24255-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24254-0
Online ISBN: 978-3-031-24255-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)