Skip to main content

Recognition of Vertical Migrations for Two Age Groups of Zooplankton

  • Conference paper
  • First Online:
Mathematical Modeling and Supercomputer Technologies (MMST 2022)

Abstract

The purpose of the work is to predict the appearance of significant vertical movements of two age zooplankton groups as a result of adaptation to habitat conditions. The methodological basis for solving the problem is the maximization of the fitness function. Vertical migrations are considered as a strategy that ensures the achievement of the greatest value of this function for given environmental conditions. The environmental factors influencing the appearance of vertical migrations are the availability of food and predator activity, water temperature and hydrogen sulfide concentration. Experimentally recorded data on these factors have always some noise and are of a discrete selective nature. In this regard, machine learning tools are used to solve the problem. The most important stage of the work is the construction of the training sample. For this purpose, the results of an analytical and numerical search for the optimal behavior are used with linear-quadratic and hyperbolic approximations of external factors.

As a result of the study, a neural network was built that solves the problem of classifying input data sets into four classes corresponding to the presence or absence of significant vertical movements in young and adult individuals under these conditions. This makes it possible to fairly accurately recognize the presence or absence of significant vertical migrations for young and adult zooplankton individuals according to approximately specified environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stucchi, L., et al.: A general model of population dynamics accounting for multiple kinds of interaction. Complexity 2020, 7961327 (2020). https://doi.org/10.1155/2020/7961327

    Article  Google Scholar 

  2. Frisman, E.Y., Zhdanova, O.L., Kulakov, M.P., Neverova, G.P., Revutskaya, O.L.: Mathematical modeling of population dynamics based on recurrent equations: results and prospects. Part I. Biol. Bull. 48(1), 1–15 (2021). https://doi.org/10.1134/S1062359021010064

    Article  Google Scholar 

  3. McBride, J.M., Nimphius, S.: Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading. Sci. Rep. 10, 12052 (2020). https://doi.org/10.1038/s41598-020-68714-8

  4. Demidova, A., Druzhinina, O., Jaćimović, M., Masina, O., Mijajlovic, N.: Problems of synthesis, analysis and optimization of parameters for multidimensional mathematical models of interconnected populations dynamics. In: Jaćimović, M., Khachay, M., Malkova, V., Posypkin, M. (eds.) OPTIMA 2019. CCIS, vol. 1145, pp. 56–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38603-0_5

    Chapter  MATH  Google Scholar 

  5. Ringelberg, J.: Diel Vertical Migration of Zooplankton in Lakes and Oceans. Springer, Dordrecht (2010)

    Book  Google Scholar 

  6. Bandara, K., et al.: Two hundred years of zooplankton vertical migration research. Biol. Rev. 96(4), 1547–1589 (2021). https://doi.org/10.1111/brv.12715

    Article  MathSciNet  Google Scholar 

  7. Clark, C., Mangel, M.: Dynamic State Variable Models in Ecology: Methods and Applications. Oxford University Press, Oxford (2000)

    Google Scholar 

  8. Ducklow, H., Steinberg, D., Buesseler, K.: Upper ocean carbon export and the biological pump. Oceanography 14(4), 50–58 (2001). https://doi.org/10.5670/oceanog.2001.06

    Article  Google Scholar 

  9. Hays, G.: A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503(1–3), 163–170 (2003). https://doi.org/10.1023/B:HYDR.0000008476.23617.b0

    Article  Google Scholar 

  10. Kaiser, M., et al.: Marine Ecology: Processes, Systems and Impacts. Oxford University Press, Oxford (2005)

    Google Scholar 

  11. Buesseler, K., et al.: Revisiting carbon flux through the ocean’s twilight zone. Science 316(5824), 567–570 (2007). https://doi.org/10.1126/science.1137959

    Article  Google Scholar 

  12. Isla, A., Scharek, R., Latasa, M.: Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015). https://doi.org/10.1016/j.jmarsys.2014.10.017

    Article  Google Scholar 

  13. Archibald, K.M., Siegel, D.A., Doney, S.C.: Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33, 181–199 (2019). https://doi.org/10.1029/2018GB005983

    Article  Google Scholar 

  14. Ohman, M.D.: The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60(3), 257–281 (1990). https://doi.org/10.2307/1943058

    Article  Google Scholar 

  15. Morozov, A., Kuzenkov, O., Arashkevich, E.: Modelling optimal behavioral strategies in structured populations using a novel theoretical framework. Sci. Rep. 9, 15020 (2019). https://doi.org/10.1038/s41598-019-51310-w

    Article  Google Scholar 

  16. Baumgartner, M.F., Tarrant, A.M.: The physiology and ecology of diapause in marine copepods. Annu. Rev. Mar. Sci. 9, 387–411 (2017). https://doi.org/10.1146/annurev-marine-010816-060505

    Article  Google Scholar 

  17. Hansen, A.N., Visser, A.W.: Carbon export by vertically migrating zooplankton: an optimal behavior model. Limnol. Oceanogr. 61(2), 701–710 (2016). https://doi.org/10.1002/lno.10249

    Article  Google Scholar 

  18. Arcifa, M.S., et al.: Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes. Limnetica 35(2), 281–296 (2016). https://doi.org/10.23818/limn.35.23

    Article  Google Scholar 

  19. Hafker, N.S., Meyer, B., Last, K.S., Pond, D.W., Huppe, L., Teschke, M.: Circadian clock involvement in zooplankton diel vertical migration. Curr. Biol. 27(14), 2194.e3–2201.e3 (2017). https://doi.org/10.1016/j.cub.2017.06.025

  20. Guerra, D., Schroeder, K., Borghini, M., et al.: Zooplankton diel vertical migration in the Corsica channel (North-western Mediterranean sea) detected by a moored acoustic doppler current profiler. Ocean Sci. 15(3), 631–649 (2019). https://doi.org/10.5194/os-15-631-2019

    Article  Google Scholar 

  21. Fiksen, O., Giske, J.: Vertical distribution and population dynamics of copepods by dynamic optimization. ICESJ Mar. Sci. 52, 483–503 (1995). https://doi.org/10.1016/1054-3139(95)80062-X

    Article  Google Scholar 

  22. Morozov, A., Kuzenkov, O.: Towards developing a general framework for modelling vertical migration in zooplankton. J. Theor. Biol. 405, 17–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sandhu, S.K., Morozov, A., Kuzenkov, O.: Revealing evolutionarily optimal strategies in self-reproducing systems via a new computational approach. Bull. Math. Biol. 81(11), 4701–4725 (2019). https://doi.org/10.1007/s11538-019-00663-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Gyllenberg, M., Metz, J., Service, R.: When do optimisation arguments make evolutionary sense? In: Chalub, F., Rodrigues, J. (eds.) The Mathematics of Darwin’s Legacy. MBI, pp. 233–268. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0122-5_12

    Chapter  Google Scholar 

  25. Birch, J.: Natural selection and the maximization of fitness. Biol. Rev. 91(3), 712–727 (2016). https://doi.org/10.1111/brv.12190

    Article  Google Scholar 

  26. Gavrilets, S.: Fitness Landscapes and the Origin of Species (MPB-41). Princeton University Press, Princeton (2004)

    Book  Google Scholar 

  27. Wilfried, G., Bernhard, T.: Vertical migration of zooplankton as an evolutionarily stable strategy. Am. Nat. 132(2), 199–216 (1988). https://doi.org/10.1086/284845

    Article  Google Scholar 

  28. Klimenko, A.Y.: Entropy and equilibria in competitive systems. Entropy 16(1), 1–22 (2014). https://doi.org/10.3390/e16010001

    Article  MathSciNet  Google Scholar 

  29. Parvinen, K., Dieckmann, U., Heino, M.: Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol. 52, 1–26 (2006). https://doi.org/10.1007/s00285-005-0329-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Gorban, A.: Equilibrium Encircling. Equations of Chemical Kinetics and Their Thermodynamic Analysis. Nauka, Novosibirsk (1984). (in Russian)

    Google Scholar 

  31. Gorban, A.: Selection theorem for systems with inheritance. Math. Model. Nat. Phenom. 2(4), 1–45 (2007). https://doi.org/10.1051/mmnp:2008024

    Article  MathSciNet  MATH  Google Scholar 

  32. Gorban, A.N.: Self-simplification in Darwin’s systems. In: Gorban, A., Roose, D. (eds.) Coping with Complexity: Model Reduction and Data Analysis. LNCSE, vol. 75, pp. 311–344. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14941-2_17

    Chapter  Google Scholar 

  33. Kuzenkov, O.: Investigation of a dynamical system of Radon probability measures. Differ. Equ. 31(4), 549–554 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Kuzenkov, O., Ryabova, E.: Variational principle for self-replicating systems. Math. Model. Nat. Phenom. 10(2), 115–129 (2015). https://doi.org/10.1051/mmnp/201510208

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuzenkov, O., Novozhenin, A.: Optimal control of measure dynamics. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 159–171 (2015). https://doi.org/10.1016/j.cnsns.2014.08.024

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuzenkov, O., Morozov, A.: Towards the construction of a mathematically rigorous framework for the modelling of evolutionary fitness. Bull. Math. Biol. 81(11), 4675–4700 (2019). https://doi.org/10.1007/s11538-019-00602-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Abiodun, O.I., et al.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11), e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  38. Kuzenkov, O., Morozov, A., Kuzenkova, G.: Recognition of patterns of optimal diel vertical migration of zooplankton using neural networks. In: International Joint Conference on Neural Networks, Budapest Hungary, IJCNN 2019 (2019). https://doi.org/10.1109/IJCNN.2019.8852060

  39. Kuzenkov, O.: Information technologies of evolutionarily stable behavior recognition. Mod. Inf. Technol. IT Educ. 1201, 250–257 (2020). https://doi.org/10.1007/978-3-030-46895-8-20

    Article  Google Scholar 

  40. Kuzenkov, O., Ryabova, E.: Mathematical modeling of selection processes. Lobachevsky State University, Nizhnii Novgorod (2007). (in Russian)

    Google Scholar 

  41. Kuzenkov, O.A., Kuzenkova, G.V.: Optimal control of self-reproduction systems. J. Comput. Syst. Sci. Int. 51(4), 500–511 (2012). https://doi.org/10.1134/S1064230712020074

    Article  MathSciNet  MATH  Google Scholar 

  42. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  43. Bishop, Ch.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    Google Scholar 

  44. Morozov, A.Y., Kuzenkov, O.A., Sandhu, S.K.: Global optimization in Hilbert spaces using the survival of the fittest algorithm. Commun. Nonlinear Sci. Numer. Simul. 103, 106007 (2021). https://doi.org/10.1016/j.cnsns.2021.106007

  45. Kuzenkov, O., Morozov, A., Kuzenkova, G.: Exploring evolutionary fitness in biological systems using machine learning methods. Entropy 23(1), 35 (2021). https://doi.org/10.3390/e23010035

    Article  MathSciNet  Google Scholar 

  46. Kuzenkov, O., Kuzenkova, G., Kiseleva, T.: The use of electronic teaching tools in the modernization of the course “mathematical modeling of selection processes”. Educ. Tech. Soc. 21(1), 435–448 (2018). https://www.elibrary.ru/item.asp?id=32253185. (in Russian)

  47. Kuzenkov, O., Kuzenkova, G., Kiseleva, T.: Computer support of training and research projects in the field of mathematical modeling of selection processes. Educ. Technol. Soc. 22(1), 152–163 (2019). https://www.elibrary.ru/item.asp?id=37037790. (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ryabova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuzenkov, O., Ryabova, E. (2022). Recognition of Vertical Migrations for Two Age Groups of Zooplankton. In: Balandin, D., Barkalov, K., Meyerov, I. (eds) Mathematical Modeling and Supercomputer Technologies. MMST 2022. Communications in Computer and Information Science, vol 1750. Springer, Cham. https://doi.org/10.1007/978-3-031-24145-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24145-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24144-4

  • Online ISBN: 978-3-031-24145-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics