Skip to main content

Three-Dimensional Ultrasound: A Role in Early Pregnancy?

  • Chapter
  • First Online:
First-Trimester Ultrasound

Abstract

Three-dimensional ultrasound (3DUS) allows imaging of anatomical structures in multiple planes, some of which are not possible with the use of conventional two-dimensional ultrasound (2DUS). This provides an advantage when imaging early embryonic or fetal structures by transvaginal ultrasonography since manipulation of the transvaginal probe is more restricted in space when compared to the transabdominal probe. Several case reports and series highlight potential benefits of 3DUS to study the early embryonic anatomy in vivo (sonoembryology) as well as for the early diagnosis of congenital anomalies. However, comparative studies between 2DUS and 3DUS for early first trimester diagnosis are lacking. In this chapter, we review the potential role of 3DUS for early diagnosis of congenital anomalies, including congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D US:

Two-dimensional ultrasonography

3D US:

Three-dimensional ultrasonography

4D US:

Four-dimensional ultrasonography

STIC:

Spatiotemporal image correlation

References

  1. Rottem S, Bronshtein M, Thaler I, Brandes JM. First trimester transvaginal sonographic diagnosis of fetal anomalies. Lancet. 1989;1(8635):444–5. http://www.ncbi.nlm.nih.gov/pubmed/2563825.

    Article  CAS  PubMed  Google Scholar 

  2. Rottem S, Bronshtein M. Transvaginal sonographic diagnosis of congenital anomalies between 9 weeks and 16 weeks, menstrual age. J Clin Ultrasound. 1990;18(4):307–14. http://www.ncbi.nlm.nih.gov/pubmed/2160998.

    Article  CAS  PubMed  Google Scholar 

  3. Achiron R, Tadmor O. Screening for fetal anomalies during the first trimester of pregnancy: transvaginal versus transabdominal sonography. Ultrasound Obstet Gynecol. 1991;1(3):186–91. https://doi.org/10.1046/j.1469-0705.1991.01030186.x.

    Article  CAS  PubMed  Google Scholar 

  4. Timor-Tritsch IE, Monteagudo A, Peisner DB. High-frequency transvaginal sonographic examination for the potential malformation assessment of the 9-week to 14-week fetus. J Clin Ultrasound. 1992;20(4):231–8. http://www.ncbi.nlm.nih.gov/pubmed/1315796.

    Article  CAS  PubMed  Google Scholar 

  5. Achiron R, Weissman A, Rotstein Z, Lipitz S, Mashiach S, Hegesh J. Transvaginal echocardiographic examination of the fetal heart between 13 and 15 weeks’ gestation in a low-risk population. J Ultrasound Med. 1994;13(10):783–9. http://www.ncbi.nlm.nih.gov/pubmed/7823340.

    Article  CAS  PubMed  Google Scholar 

  6. Souka AP, Pilalis A, Kavalakis Y, Kosmas Y, Antsaklis P, Antsaklis A. Assessment of fetal anatomy at the 11-14-week ultrasound examination. Ultrasound Obstet Gynecol. 2004;24(7):730–4. https://doi.org/10.1002/uog.1775.

    Article  CAS  PubMed  Google Scholar 

  7. Ebrashy A, El Kateb A, Momtaz M, et al. 13-14-week fetal anatomy scan: a 5-year prospective study. Ultrasound Obstet Gynecol. 2010;35(3):292–6. https://doi.org/10.1002/uog.7444.

    Article  CAS  PubMed  Google Scholar 

  8. Katorza E, Achiron R. Early pregnancy scanning for fetal anomalies—the new standard? Clin Obstet Gynecol. 2012;55(1):199–216. https://doi.org/10.1097/GRF.0b013e3182446ae9.

    Article  PubMed  Google Scholar 

  9. Salomon LJ, Alfirevic Z, Bilardo CM, et al. ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2013;41(1):102–13. https://doi.org/10.1002/uog.12342.

    Article  CAS  PubMed  Google Scholar 

  10. Guariglia L, Rosati P. Transvaginal sonographic detection of embryonic-fetal abnormalities in early pregnancy. Obstet Gynecol. 2000;96(3):328–32. http://www.ncbi.nlm.nih.gov/pubmed/10960620.

    CAS  PubMed  Google Scholar 

  11. Iliescu D, Tudorache S, Comanescu A, et al. Improved detection rate of structural abnormalities in the first trimester using an extended examination protocol. Ultrasound Obstet Gynecol. 2013;42(3):300–9. https://doi.org/10.1002/uog.12489.

    Article  CAS  PubMed  Google Scholar 

  12. Bromley B, Shipp TD, Lyons J, Navathe RS, Groszmann Y, Benacerraf BR. Detection of fetal structural anomalies in a basic first-trimester screening program for aneuploidy. J Ultrasound Med. 2014;33(10):1737–45. https://doi.org/10.7863/ultra.33.10.1737.

    Article  PubMed  Google Scholar 

  13. Bronshtein M, Solt I, Blumenfeld Z. [The advantages of early midtrimester targeted fetal systematic organ screening for the detection of fetal anomalies—will a global change start in Israel?]. Harefuah. 2014;153(6):320–324, 368. http://www.ncbi.nlm.nih.gov/pubmed/25095602.

  14. Becker R, Wegner RD. Detailed screening for fetal anomalies and cardiac defects at the 11-13-week scan. Ultrasound Obstet Gynecol. 2006;27(6):613–8. https://doi.org/10.1002/uog.2709.

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi CM, Bellotti M, Fesslova V, Cappellini A. Fetal echocardiography at the time of the nuchal translucency scan. Ultrasound Obstet Gynecol. 2007;29(3):249–57. https://doi.org/10.1002/uog.3948.

    Article  CAS  PubMed  Google Scholar 

  16. Persico N, Moratalla J, Lombardi CM, Zidere V, Allan L, Nicolaides KH. Fetal echocardiography at 11-13 weeks by transabdominal high-frequency ultrasound. Ultrasound Obstet Gynecol. 2011;37(3):296–301. https://doi.org/10.1002/uog.8934.

    Article  CAS  PubMed  Google Scholar 

  17. Vinals F, Ascenzo R, Naveas R, Huggon I, Giuliano A. Fetal echocardiography at 11 + 0 to 13 + 6 weeks using four-dimensional spatiotemporal image correlation telemedicine via an Internet link: a pilot study. Ultrasound Obstet Gynecol. 2008;31(6):633–8. https://doi.org/10.1002/uog.5350.

    Article  CAS  PubMed  Google Scholar 

  18. Bennasar M, Martinez JM, Olivella A, et al. Feasibility and accuracy of fetal echocardiography using four-dimensional spatiotemporal image correlation technology before 16 weeks’ gestation. Ultrasound Obstet Gynecol. 2009;33(6):645–51. https://doi.org/10.1002/uog.6374.

    Article  CAS  PubMed  Google Scholar 

  19. Votino C, Cos T, Abu-Rustum R, et al. Use of spatiotemporal image correlation at 11-14 weeks’ gestation. Ultrasound Obstet Gynecol. 2013;42(6):669–78. https://doi.org/10.1002/uog.12548.

    Article  CAS  PubMed  Google Scholar 

  20. Espinoza J, Lee W, Vinals F, et al. Collaborative study of 4-dimensional fetal echocardiography in the first trimester of pregnancy. J Ultrasound Med. 2014;33(6):1079–84. https://doi.org/10.7863/ultra.33.6.1079.

    Article  PubMed  Google Scholar 

  21. Pooh RK, Kurjak A. Novel application of three-dimensional HDlive imaging in prenatal diagnosis from the first trimester. J Perinat Med. 2014; https://doi.org/10.1515/jpm-2014-0157.

  22. Castro PT, Werner H, Araujo JE. First-trimester diagnosis of conjoined twins in a multifetal pregnancy after assisted reproduction technique using HDlive rendering. J Ultrasound. 2017;20(1):85–6. https://doi.org/10.1007/s40477-016-0235-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Popovici R, Pristavu A, Sava A. Three dimensional ultrasound and hdlive technology as possible tools in teaching embryology. Clin Anat. 2017;30(7):953–7. https://doi.org/10.1002/ca.22963.

    Article  PubMed  Google Scholar 

  24. Hata T, Koyanagi A, Kawahara T, et al. HDlive Flow Silhouette with spatiotemporal image correlation for assessment of fetal cardiac structures at 12 to 14 + 6 weeks of gestation. J Perinat Med. 2022;50(3):313–8. https://doi.org/10.1515/jpm-2021-0252.

    Article  PubMed  Google Scholar 

  25. Nicolaides KH, Azar G, Byrne D, Mansur C, Marks K. Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ. 1992;304(6831):867–9. https://doi.org/10.1136/bmj.304.6831.867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goldstein I, Weizman B, Nizar K, Weiner Z. The nuchal translucency examination leading to early diagnosis of structural fetal anomalies. Early Hum Dev. 2014;90(2):87–91. https://doi.org/10.1016/j.earlhumdev.2013.12.008.

    Article  PubMed  Google Scholar 

  27. Haak MC, van Vugt JM. Echocardiography in early pregnancy: review of literature. J Ultrasound Med. 2003;22(3):271–80. http://www.ncbi.nlm.nih.gov/pubmed/12636327.

    Article  PubMed  Google Scholar 

  28. Bronshtein M, Zimmer EZ. The sonographic approach to the detection of fetal cardiac anomalies in early pregnancy. Ultrasound Obstet Gynecol. 2002;19(4):360–5. https://doi.org/10.1046/j.1469-0705.2002.00682.x.

    Article  CAS  PubMed  Google Scholar 

  29. Achiron R, Rotstein Z, Lipitz S, Mashiach S, Hegesh J. First-trimester diagnosis of fetal congenital heart disease by transvaginal ultrasonography. Obstet Gynecol. 1994;84(1):69–72. http://www.ncbi.nlm.nih.gov/pubmed/8008327.

    CAS  PubMed  Google Scholar 

  30. Yagel S, Weissman A, Rotstein Z, et al. Congenital heart defects: natural course and in utero development. Circulation. 1997;96(2):550–5. http://www.ncbi.nlm.nih.gov/pubmed/9244224.

    Article  CAS  PubMed  Google Scholar 

  31. Timor-Tritsch IE, Farine D, Rosen MG. A close look at early embryonic development with the high-frequency transvaginal transducer. Am J Obstet Gynecol. 1988;159(3):676–81. http://www.ncbi.nlm.nih.gov/pubmed/3048101.

    Article  CAS  PubMed  Google Scholar 

  32. Timor-Tritsch IE, Peisner DB, Raju S. Sonoembryology: an organ-oriented approach using a high-frequency vaginal probe. J Clin Ultrasound. 1990;18(4):286–98. http://www.ncbi.nlm.nih.gov/pubmed/2160995.

    Article  CAS  PubMed  Google Scholar 

  33. Takeuchi H. Transvaginal ultrasound in the first trimester of pregnancy. Early Hum Dev. 1992;29(1–3):381–4. http://www.ncbi.nlm.nih.gov/pubmed/1396272.

    Article  CAS  PubMed  Google Scholar 

  34. Blaas HG, Eik-Nes SH, Kiserud T, Berg S, Angelsen B, Olstad B. Three-dimensional imaging of the brain cavities in human embryos. Ultrasound Obstet Gynecol. 1995;5(4):228–32. https://doi.org/10.1046/j.1469-0705.1995.05040228.x.

    Article  CAS  PubMed  Google Scholar 

  35. Blaas HG, Eik-Nes SH, Berg S, Torp H. In-vivo three-dimensional ultrasound reconstructions of embryos and early fetuses. Lancet. 1998;352(9135):1182–6. https://doi.org/10.1016/S0140-6736(98)03227-9.

    Article  CAS  PubMed  Google Scholar 

  36. Blaas HG, Taipale P, Torp H, Eik-Nes SH. Three-dimensional ultrasound volume calculations of human embryos and young fetuses: a study on the volumetry of compound structures and its reproducibility. Ultrasound Obstet Gynecol. 2006;27(6):640–6. https://doi.org/10.1002/uog.2794.

    Article  PubMed  Google Scholar 

  37. Benoit B, Hafner T, Kurjak A, Kupesic S, Bekavac I, Bozek T. Three-dimensional sonoembryology. J Perinat Med. 2002;30(1):63–73. https://doi.org/10.1515/JPM.2002.009.

    Article  PubMed  Google Scholar 

  38. Pooh RK, Pooh KH. The assessment of fetal brain morphology and circulation by transvaginal 3D sonography and power Doppler. J Perinat Med. 2002;30(1):48–56. https://doi.org/10.1515/JPM.2002.007.

    Article  PubMed  Google Scholar 

  39. Zanforlin Filho SM, Araujo Junior E, Guiaraes Filho HA, Pires CR, Nardozza LM, Moron AF. Sonoembryology by three-dimensional ultrasonography: pictorial essay. Arch Gynecol Obstet. 2007;276(2):197–200. https://doi.org/10.1007/s00404-007-0330-8.

    Article  PubMed  Google Scholar 

  40. Kim MS, Jeanty P, Turner C, Benoit B. Three-dimensional sonographic evaluations of embryonic brain development. J Ultrasound Med. 2008;27(1):119–24. http://www.ncbi.nlm.nih.gov/pubmed/18096737.

    Article  PubMed  Google Scholar 

  41. Atanasova D, Markov D, Pavlova E, Markov P, Ivanov S. [Three-dimensional sonoembryology—myth or reality]. Akush Ginekol. 2010;49(6):26–30. http://www.ncbi.nlm.nih.gov/pubmed/21427872.

  42. Pooh RK, Shiota K, Kurjak A. Imaging of the human embryo with magnetic resonance imaging microscopy and high-resolution transvaginal 3-dimensional sonography: human embryology in the 21st century. Am J Obstet Gynecol. 2011;204(1):77:e1–16. https://doi.org/10.1016/j.ajog.2010.07.028.

    Article  Google Scholar 

  43. Pooh RK. Neurosonoembryology by three-dimensional ultrasound. Semin Fetal Neonatal Med. 2012;17(5):261–8. https://doi.org/10.1016/j.siny.2012.05.008.

    Article  PubMed  Google Scholar 

  44. Bonilla-Musoles F, Raga F, Osborne NG, Blanes J. Use of three-dimensional ultrasonography for the study of normal and pathologic morphology of the human embryo and fetus: preliminary report. J Ultrasound Med. 1995;14(10):757–65. http://www.ncbi.nlm.nih.gov/pubmed/8544243.

    Article  CAS  PubMed  Google Scholar 

  45. Blaas HG, Eik-Nes SH. First-trimester diagnosis of fetal malformations. In: Rodeck C, Whittle M, editors. Fetal medicine: basic science and clinical practice. London: Harcourt Brace; 1999. p. 581–97.

    Google Scholar 

  46. Blaas HG, Eik-Nes SH, Isaksen CV. The detection of spina bifida before 10 gestational weeks using two- and three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2000;16(1):25–9. https://doi.org/10.1046/j.1469-0705.2000.00149.x.

    Article  CAS  PubMed  Google Scholar 

  47. Blaas HG, Eik-Nes SH, Vainio T, Isaksen CV. Alobar holoprosencephaly at 9 weeks gestational age visualized by two- and three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2000;15(1):62–5. https://doi.org/10.1046/j.1469-0705.2000.00005.x.

    Article  CAS  PubMed  Google Scholar 

  48. Tonni G, Ventura A, Centini G, De Felice C. First trimester three-dimensional transvaginal imaging of alobar holoprosencephaly associated with proboscis and hypotelorism (ethmocephaly) in a 46, XX fetus. Congenit Anom. 2008;48(1):51–5. https://doi.org/10.1111/j.1741-4520.2007.00171.x.

    Article  Google Scholar 

  49. Timor-Tritsch IE, Monteagudo A, Santos R. Three-dimensional inversion rendering in the first- and early second-trimester fetal brain: its use in holoprosencephaly. Ultrasound Obstet Gynecol. 2008;32(6):744–50. https://doi.org/10.1002/uog.6245.

    Article  CAS  PubMed  Google Scholar 

  50. Blaas HG, Eik-Nes SH. Sonoembryology and early prenatal diagnosis of neural anomalies. Prenat Diagn. 2009;29(4):312–25. https://doi.org/10.1002/pd.2170.

    Article  PubMed  Google Scholar 

  51. Dane B, Dane C, Aksoy F, Yayla M. Semilobar holoprosencephaly with associated cyclopia and radial aplasia: first trimester diagnosis by means of integrating 2D-3D ultrasound. Arch Gynecol Obstet. 2009;280(4):647–51. https://doi.org/10.1007/s00404-009-0975-6.

    Article  PubMed  Google Scholar 

  52. Bromley B, Shipp TD, Benacerraf BR. Structural anomalies in early embryonic death: a 3-dimensional pictorial essay. J Ultrasound Med. 2010;29(3):445–53. http://www.ncbi.nlm.nih.gov/pubmed/20194939.

    Article  PubMed  Google Scholar 

  53. Blaas HG, Eik-Nes SH, Kiserud T, Hellevik LR. Early development of the hindbrain: a longitudinal ultrasound study from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1995;5(3):151–60. https://doi.org/10.1046/j.1469-0705.1995.05030151.x.

    Article  CAS  PubMed  Google Scholar 

  54. Fleischer A, Rebele E. Transvaginal sonography of early (first trimester) intrauterine pregnancy. In: Fleischer A, Toy E, Manning F, Abramowicz J, Goncalves L, Timor-Tritsch IE, editors. Fleischer’s sonography in obstetrics & gynecology. 8th ed. New York: McGraw-Hill; 2018. p. 45–80.

    Google Scholar 

  55. Doubilet PM, Benson CB, Bourne T, et al. Diagnostic criteria for nonviable pregnancy early in the first trimester. N Engl J Med. 2013;369(15):1443–51. https://doi.org/10.1056/NEJMra1302417.

    Article  CAS  PubMed  Google Scholar 

  56. O’Rahilly R, Müller F, Wiley I. The embryonic human brain : an atlas of developmental stages. 3rd ed. Hoboken, NJ: Wiley-Liss; 2006.

    Book  Google Scholar 

  57. Pooh RK. Sonoembryology by 3D HDlive silhouette ultrasound—what is added by the “see-through fashion”? J Perinat Med. 2016;44(2):139–48. https://doi.org/10.1515/jpm-2016-0008.

    Article  PubMed  Google Scholar 

  58. Yamada S, Samtani RR, Lee ES, et al. Developmental atlas of the early first trimester human embryo. Dev Dyn. 2010;239(6):1585–95. https://doi.org/10.1002/dvdy.22316.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shiraishi N, Katayama A, Nakashima T, et al. Morphology and morphometry of the human embryonic brain: a three-dimensional analysis. NeuroImage. 2015;115:96–103. https://doi.org/10.1016/j.neuroimage.2015.04.044.

    Article  CAS  PubMed  Google Scholar 

  60. Pooh RK, Kurjak A. Novel application of three-dimensional HDlive imaging in prenatal diagnosis from the first trimester. J Perinat Med. 2015;43(2):147–58. https://doi.org/10.1515/jpm-2014-0157.

    Article  PubMed  Google Scholar 

  61. O’Rahilly R, Muller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010;192(2):73–84. https://doi.org/10.1159/000289817.

    Article  PubMed  Google Scholar 

  62. Maymon R, Halperin R, Weinraub Z, Herman A, Schneider D. Three-dimensional transvaginal sonography of conjoined twins at 10 weeks: a case report. Ultrasound Obstet Gynecol. 1998;11(4):292–4. https://doi.org/10.1046/j.1469-0705.1998.11040292.x.

    Article  CAS  PubMed  Google Scholar 

  63. Kurjak A, Pooh RK, Merce LT, Carrera JM, Salihagic-Kadic A, Andonotopo W. Structural and functional early human development assessed by three-dimensional and four-dimensional sonography. Fertil Steril. 2005;84(5):1285–99. https://doi.org/10.1016/j.fertnstert.2005.03.084.

    Article  PubMed  Google Scholar 

  64. Forest CP, Goodman D, Hahn RG. Meningomyelocele: early detection using 3-dimensional ultrasound imaging in the family medicine center. J Am Board Fam Med. 2010;23(2):270–2. https://doi.org/10.3122/jabfm.2010.02.090226.

    Article  PubMed  Google Scholar 

  65. Blaas HG. Detection of structural abnormalities in the first trimester using ultrasound. Best Pract Res Clin Obstet Gynaecol. 2014;28(3):341–53. https://doi.org/10.1016/j.bpobgyn.2013.11.004.

    Article  PubMed  Google Scholar 

  66. Quijano FE, Rey MM, Echeverry M, Axt-Fliedner R. Body stalk anomaly in a 9-week pregnancy. Case Rep Obstet Gynecol. 2014;2014:357285. https://doi.org/10.1155/2014/357285.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang Y, Wang H, Wang Z, Pan X, Chen Y. First trimester diagnosis of body stalk anomaly complicated by ectopia cordis. J Int Med Res. 2020;48(12):300060520980210. https://doi.org/10.1177/0300060520980210.

    Article  PubMed  Google Scholar 

  68. Ramkrishna J, Menezes M, Humnabadkar K, et al. Outcomes following the detection of fetal edema in early pregnancy prior to non-invasive prenatal testing. Prenat Diagn. 2021;41(2):241–7. https://doi.org/10.1002/pd.5847.

    Article  CAS  PubMed  Google Scholar 

  69. Cafici D, Sepulveda W. First-trimester echogenic amniotic fluid in the acrania-anencephaly sequence. J Ultrasound Med. 2003;22(10):1075–9; quiz 1080–1. https://doi.org/10.7863/jum.2003.22.10.1075.

    Article  PubMed  Google Scholar 

  70. Timor-Tritsch IE, Greenebaum E, Monteagudo A, Baxi L. Exencephaly-anencephaly sequence: proof by ultrasound imaging and amniotic fluid cytology. J Matern Fetal Med. 1996;5(4):182–5. https://doi.org/10.1002/(SICI)1520-6661(199607/08)5:4<182::AID-MFM4>3.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  71. Sepulveda W, Dezerega V, Be C. First-trimester sonographic diagnosis of holoprosencephaly: value of the “butterfly” sign. J Ultrasound Med. 2004;23(6):761–5; quiz 766–7. https://doi.org/10.7863/jum.2004.23.6.761.

    Article  PubMed  Google Scholar 

  72. Hashimoto K, Shimizu T, Fukuda M, et al. Pregnancy outcome of embryonic/fetal pleural effusion in the first trimester. J Ultrasound Med. 2003;22(5):501–5. https://doi.org/10.7863/jum.2003.22.5.501.

    Article  PubMed  Google Scholar 

  73. Harris RD, Couto C, Karpovsky C, Porter MM, Ouhilal S. The chorionic bump: a first-trimester pregnancy sonographic finding associated with a guarded prognosis. J Ultrasound Med. 2006;25(6):757–63. https://doi.org/10.7863/jum.2006.25.6.757.

    Article  PubMed  Google Scholar 

  74. Arleo EK, Dunning A, Troiano RN. Chorionic bump in pregnant patients and associated live birth rate: a systematic review and meta-analysis. J Ultrasound Med. 2015;34(4):553–7. https://doi.org/10.7863/ultra.34.4.553.

    Article  PubMed  Google Scholar 

  75. Baalmann CG, Galgano SJ, Pietryga JA, Novak L, Robbin ML. A case of a chorionic bump: new sonographic-histopathologic findings with review of the literature. J Ultrasound Med. 2017;36(9):1968–70. https://doi.org/10.1002/jum.14240.

    Article  PubMed  Google Scholar 

  76. D’Antonio F, Khalil A, Mantovani E, Thilaganathan B. Southwest Thames Obstetric Research C. Embryonic growth discordance and early fetal loss: the STORK multiple pregnancy cohort and systematic review. Hum Reprod. 2013;28(10):2621–7. https://doi.org/10.1093/humrep/det277.

    Article  PubMed  Google Scholar 

  77. Snijders RJ, Noble P, Sebire N, Souka A, Nicolaides KH. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. Lancet. 1998;352(9125):343–6. https://doi.org/10.1016/s0140-6736(97)11280-6.

    Article  CAS  PubMed  Google Scholar 

  78. Souka AP, Snijders RJ, Novakov A, Soares W, Nicolaides KH. Defects and syndromes in chromosomally normal fetuses with increased nuchal translucency thickness at 10-14 weeks of gestation. Ultrasound Obstet Gynecol. 1998;11(6):391–400. https://doi.org/10.1046/j.1469-0705.1998.11060391.x.

    Article  CAS  PubMed  Google Scholar 

  79. Hyett J, Perdu M, Sharland G, Snijders R, Nicolaides KH. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10-14 weeks of gestation: population based cohort study. BMJ. 1999;318(7176):81–5. https://doi.org/10.1136/bmj.318.7176.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Simula N, Brown R, Butt K, et al. Committee Opinion No. 418: The complete 11-14 week prenatal sonographic examination. J Obstet Gynaecol Can. 2021;43(8):1013–21. https://doi.org/10.1016/j.jogc.2021.05.004.

    Article  PubMed  Google Scholar 

  81. Karim JN, Roberts NW, Salomon LJ, Papageorghiou AT. Systematic review of first-trimester ultrasound screening for detection of fetal structural anomalies and factors that affect screening performance. Ultrasound Obstet Gynecol. 2017;50(4):429–41. https://doi.org/10.1002/uog.17246.

    Article  CAS  PubMed  Google Scholar 

  82. Syngelaki A, Hammami A, Bower S, Zidere V, Akolekar R, Nicolaides KH. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11-13 weeks’ gestation. Ultrasound Obstet Gynecol. 2019;54(4):468–76. https://doi.org/10.1002/uog.20844.

    Article  CAS  PubMed  Google Scholar 

  83. Dias T, Arcangeli T, Bhide A, Napolitano R, Mahsud-Dornan S, Thilaganathan B. First-trimester ultrasound determination of chorionicity in twin pregnancy. Ultrasound Obstet Gynecol. 2011;38(5):530–2. https://doi.org/10.1002/uog.8956.

    Article  CAS  PubMed  Google Scholar 

  84. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22. https://doi.org/10.1056/NEJMoa1704559.

    Article  CAS  PubMed  Google Scholar 

  85. Yagel S, Achiron R, Ron M, Revel A, Anteby E. Transvaginal ultrasonography at early pregnancy cannot be used alone for targeted organ ultrasonographic examination in a high-risk population. Am J Obstet Gynecol. 1995;172(3):971–5. http://www.ncbi.nlm.nih.gov/pubmed/7892892.

    Article  CAS  PubMed  Google Scholar 

  86. Hernadi L, Torocsik M. Screening for fetal anomalies in the 12th week of pregnancy by transvaginal sonography in an unselected population. Prenat Diagn. 1997;17(8):753–9. http://www.ncbi.nlm.nih.gov/pubmed/9267899.

    Article  CAS  PubMed  Google Scholar 

  87. D’Ottavio G, Mandruzzato G, Meir YJ, et al. Comparisons of first and second trimester screening for fetal anomalies. Ann N Y Acad Sci. 1998;847:200–9. http://www.ncbi.nlm.nih.gov/pubmed/9668713.

    Article  PubMed  Google Scholar 

  88. Comas Gabriel C, Galindo A, Martinez JM, et al. Early prenatal diagnosis of major cardiac anomalies in a high-risk population. Prenat Diagn. 2002;22(7):586–93. https://doi.org/10.1002/pd.372.

    Article  CAS  PubMed  Google Scholar 

  89. Chaoui R, Benoit B, Mitkowska-Wozniak H, Heling KS, Nicolaides KH. Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11-13-week scan. Ultrasound Obstet Gynecol. 2009;34(3):249–52. https://doi.org/10.1002/uog.7329.

    Article  CAS  PubMed  Google Scholar 

  90. Volpe N, Dall’Asta A, Di Pasquo E, Frusca T, Ghi T. First-trimester fetal neurosonography: technique and diagnostic potential. Ultrasound Obstet Gynecol. 2021;57(2):204–14. https://doi.org/10.1002/uog.23149.

    Article  CAS  PubMed  Google Scholar 

  91. Sepulveda W, Wong AE. First trimester screening for holoprosencephaly with choroid plexus morphology (‘butterfly’ sign) and biparietal diameter. Prenat Diagn. 2013;33(13):1233–7. https://doi.org/10.1002/pd.4235.

    Article  PubMed  Google Scholar 

  92. Van den Hof MC, Nicolaides KH, Campbell J, Campbell S. Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol. 1990;162(2):322–7. https://doi.org/10.1016/0002-9378(90)90378-k.

    Article  PubMed  Google Scholar 

  93. Andronikou S, Wieselthaler N, Fieggen AG. Cervical spina bifida cystica: MRI differentiation of the subtypes in children. Childs Nerv Syst. 2006;22(4):379–84. https://doi.org/10.1007/s00381-005-1165-x.

    Article  PubMed  Google Scholar 

  94. Chaoui R, Orosz G, Heling KS, Sarut-Lopez A, Nicolaides KH. Maxillary gap at 11-13 weeks’ gestation: marker of cleft lip and palate. Ultrasound Obstet Gynecol. 2015;46(6):665–9. https://doi.org/10.1002/uog.15675.

    Article  CAS  PubMed  Google Scholar 

  95. Pooh KH, Nakamura CT, Kawakami K, Inoue K. Low-set ear in fetuses with CRL 45-84mm detected by 3D ultrasound. Ultrasound Obstet Gynecol. 2014;44(S1):79(Abstract) (in English). https://doi.org/10.1002/uog.13691.

    Article  Google Scholar 

  96. Chen Q, Zhao Y, Qian Y, Lu C, Shen G, Dai J. A genetic-phenotypic classification for syndromic micrognathia. J Hum Genet. 2019;64(9):875–83. https://doi.org/10.1038/s10038-019-0630-4.

    Article  PubMed  Google Scholar 

  97. Singh DJ, Bartlett SP. Congenital mandibular hypoplasia: analysis and classification. J Craniofac Surg. 2005;16(2):291–300. https://doi.org/10.1097/00001665-200503000-00017.

    Article  PubMed  Google Scholar 

  98. Sepulveda W, Wong AE, Vinals F, Andreeva E, Adzehova N, Martinez-Ten P. Absent mandibular gap in the retronasal triangle view: a clue to the diagnosis of micrognathia in the first trimester. Ultrasound Obstet Gynecol. 2012;39(2):152–6. https://doi.org/10.1002/uog.10121.

    Article  CAS  PubMed  Google Scholar 

  99. Sepulveda W, Wong AE, Martinez-Ten P, Perez-Pedregosa J. Retronasal triangle: a sonographic landmark for the screening of cleft palate in the first trimester. Ultrasound Obstet Gynecol. 2010;35(1):7–13. https://doi.org/10.1002/uog.7484.

    Article  CAS  PubMed  Google Scholar 

  100. Karim JN, Bradburn E, Roberts N, Papageorghiou AT, ACCEPTS Study. First-trimester ultrasound detection of fetal heart anomalies: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2022;59(1):11–25. https://doi.org/10.1002/uog.23740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gindes L, Matsui H, Achiron R, Mohun T, Ho SY, Gardiner H. Comparison of ex-vivo high-resolution episcopic microscopy with in-vivo four-dimensional high-resolution transvaginal sonography of the first-trimester fetal heart. Ultrasound Obstet Gynecol. 2012;39(2):196–202. https://doi.org/10.1002/uog.9068.

    Article  CAS  PubMed  Google Scholar 

  102. Lima AI, Araujo Junior E, Martins WP, Nardozza LM, Moron AF, Pares DB. Assessment of the fetal heart at 12-14 weeks of pregnancy using B-mode, color Doppler, and spatiotemporal image correlation via abdominal and vaginal ultrasonography. Pediatr Cardiol. 2013;34(7):1577–82. https://doi.org/10.1007/s00246-013-0686-4.

    Article  PubMed  Google Scholar 

  103. Tudorache S, Cara M, Iliescu DG, Novac L, Cernea N. First trimester two- and four-dimensional cardiac scan: intra- and interobserver agreement, comparison between methods and benefits of color Doppler technique. Ultrasound Obstet Gynecol. 2013;42(6):659–68. https://doi.org/10.1002/uog.12459.

    Article  CAS  PubMed  Google Scholar 

  104. Turan S, Turan OM, Desai A, Harman CR, Baschat AA. First-trimester fetal cardiac examination using spatiotemporal image correlation, tomographic ultrasound and color Doppler imaging for the diagnosis of complex congenital heart disease in high-risk patients. Ultrasound Obstet Gynecol. 2014;44(5):562–7. https://doi.org/10.1002/uog.13341.

    Article  CAS  PubMed  Google Scholar 

  105. Parada Villavicencio C, Adam SZ, Nikolaidis P, Yaghmai V, Miller FH. Imaging of the urachus: anomalies, complications, and mimics. Radiographics. 2016;36(7):2049–63. https://doi.org/10.1148/rg.2016160062.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís F. Goncalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ximenes, R., Peters, R., Goncalves, L.F. (2023). Three-Dimensional Ultrasound: A Role in Early Pregnancy?. In: Abramowicz, J.S., Longman, R.E. (eds) First-Trimester Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-031-24133-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24133-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24132-1

  • Online ISBN: 978-3-031-24133-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics