Skip to main content

A Practical Guide to Telehealth in Ophthalmology

  • Chapter
  • First Online:
Digital Eye Care and Teleophthalmology

Abstract

Recent advancements in ophthalmic imaging, telehealth, and simulation technology have catalyzed broad developments in multiple domains, ranging from remote diabetic screening to microsurgical training. Successful implementation of these initiatives relies on a customized approach that accounts for a variety of potential barriers to adoption. These factors range from resource allocation, geopolitical and social considerations, social determinants of health, among countless other logistical challenges. Given wide global disparities in healthcare access, the advent and success of teleophthalmology as a tool to bridge this disconnect has brought tremendous optimism to our field. While far from a replacement to traditional medical consultations, teleophthalmology can augment specialty care reach, particularly in under-resourced areas. This type of outreach provides an opportunity for patients to seek basic screening opportunities capable of reliably detecting many major ophthalmic pathologies such as glaucoma and diabetic retinopathy. In the realm of surgical education, wet lab training with animal or human cadaveric specimens, and more recently synthetic tissues, have been a mainstay of training programs globally. Advancements in virtual reality (VR) training have further augmented educational opportunities for learners globally, where the demand for surgical care for reversible vision loss is greatest. Specifically, training in manual small-incision cataract surgery (MSICS) allows experienced surgeons to treat reversible blindness from cataracts safely, efficiently, and effectively with minimal reliance on costly hardware and specialized surgical devices. HelpMeSee® (New York City, USA) is a non-profit organization that has pioneered a VR-based surgical training device that not only allows an immersive visual experience, but furthermore provides nuanced haptic feedback which realistically simulates human tissue dynamics during surgery. Virtual simulation offers numerous advantages, including the ability to provide objective feedback, track learning curves, and allow for the creation of a customizable curriculum without the hassle and cost of specimen-based simulation in a wet lab environment. Validation studies have indeed demonstrated reductions in complication rates for surgeons trained with VR resources. As the fidelity of these simulators continues to improve, broader adoption in surgical training programs will follow, and challenges in access to simulator training will continue to need to be addressed to improve accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AAO. Telemedicine for Ophthalmology Information Statement 2018 [cited 2018. Available from: https://www.aao.org/clinical-statement/telemedicine-ophthalmology-information-statement.

  2. Li Y, Karnowski TP, Tobin KW, Giancardo L, Morris S, Sparrow SE, et al. A health insurance portability and accountability act-compliant ocular telehealth network for the remote diagnosis and management of diabetic retinopathy. Telemed J E Health. 2011;17(8):627–34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan CS, Sadda SR. The role of central reading centers–current practices and future directions. Indian J Ophthalmol. 2015;63(5):404–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiao D, Vignarajan J, Chen T, Ye T, Xiao B, Congdon N, et al. Content design and system implementation of a teleophthalmology system for eye disease diagnosis and treatment and its preliminary practice in Guangdong. China Telemed J E Health. 2017;23(12):964–75.

    Article  PubMed  Google Scholar 

  5. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leng T. The machines are coming: implications for image reading centers of the future. Ophthalmology. 2020;127(6):802–3.

    Article  PubMed  Google Scholar 

  7. Cavallerano J, Lawrence MG, Zimmer-Galler I, Bauman W, Bursell S, Gardner WK, et al. Telehealth practice recommendations for diabetic retinopathy. Telemed J E Health. 2004;10(4):469–82.

    Google Scholar 

  8. Lopez-Star E, Allison-Eckert K, Limburg H, Brea-Rodriguez I, Lansingh VC. Rapid Assessment of Avoidable Blindness Including Diabetic Retinopathy in Queretaro. Mexico Rev Mex Oftalmol. 2018;92(2):84–93.

    Google Scholar 

  9. Melles RB, Conell C, Siegner SW, Tarasewicz D. Diabetic retinopathy screening using a virtual reading center. Acta Diabetol. 2020;57(2):183–8.

    Article  PubMed  Google Scholar 

  10. Perumalsamy N, Prasad NM, Sathya S, Ramasamy K. Software for reading and grading diabetic retinopathy: aravind diabetic retinopathy screening 3.0. diabetes care. 2007;30(9):2302–6.

    Google Scholar 

  11. Resnikoff S, Lansingh VC, Washburn L, Felch W, Gauthier TM, Taylor HR, et al. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs? Br J Ophthalmol. 2020;104(4):588–92.

    Article  PubMed  Google Scholar 

  12. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1–29.

    Google Scholar 

  13. Abramoff MD, Suttorp-Schulten MS. Web-based screening for diabetic retinopathy in a primary care population: the EyeCheck project. Telemed J E Health. 2005;11(6):668–74.

    Article  PubMed  Google Scholar 

  14. Rogers TW, Gonzalez-Bueno J, Garcia-franco R, et al. Evaluation of an AI system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the MAILOR AI study. Eye. 2021;35:632–8.

    Article  CAS  PubMed  Google Scholar 

  15. McKenna M, Chen T, McAneney H, Vázquez Membrillo MA, Jin L, Xiao W, et al. Accuracy of trained rural ophthalmologists versus non-medical image graders in the diagnosis of diabetic retinopathy in rural China. Br J Ophthalmol. 2018;102(11):1471–6.

    Google Scholar 

  16. Patel S, Klein RM, Patel A, Klein RB, Aung M, Hoe W. Diabetic retinopathy screening and treatment in Myanmar: a pilot study. BMJ Open Ophthalmol. 2017;1(1): e000084.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee P. Telemedicine: opportunities and challenges for the remote care of diabetic retinopathy. Archives of ophthalmology (Chicago, Ill : 1960). 1999;117(12):1639–40.

    Google Scholar 

  18. Kuzmak PM, Dayhoff RE. Minimizing Digital Imaging and Communications in Medicine (DICOM) Modality Worklist patient/study selection errors. J Digit Imaging. 2001;14(2 Suppl 1):153–7.

    Google Scholar 

  19. Csipo D, Dayhoff RE, Kuzmak PM. Integrating Digital Imaging and Communications in Medicine (DICOM)-structured reporting into the hospital environment. J Digit Imaging. 2001;14(2 Suppl 1):12–6.

    Google Scholar 

  20. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H. Artificial intelligence in retina. Progress in retinal and eye research. 2018;67:1–29.

    Google Scholar 

  21. Bresnick GH, Mukamel DB, Dickinson JC, Cole DR. A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. Ophthalmology. 2000;107(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  22. Chee RI, Darwish D, Fernandez-Vega A, Patel S, Jonas K, Ostmo S, et al. Retinal telemedicine. Curr Ophthalmol Rep. 2018;6(1):36–45.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Horton MB, Silva PS, Cavallerano JD, Aiello LP. Clinical components of telemedicine programs for diabetic retinopathy. Curr Diab Rep. 2016;16(12):129.

    Article  PubMed  Google Scholar 

  24. Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, Bozkurt A, Erdogmus D, Kalpathy-Cramer J, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis. Transl Vis Sci Technol. 2015;4(6):5.

    Google Scholar 

  25. Campbell JP, Ataer-Cansizoglu E, Bolon-Canedo V, Bozkurt A, Erdogmus D, Kalpathy-Cramer J, et al. Expert diagnosis of plus disease in retinopathy of prematurity from computer-based image analysis. JAMA ophthalmology. 2016;134(6):651–7.

    Google Scholar 

  26. Sreelatha OK, Ramesh SV. Teleophthalmology: improving patient outcomes? Clinical ophthalmology (Auckland, NZ). 2016;10:285–95.

    Article  Google Scholar 

  27. Kalra G, Williams AM, Commiskey PW, Bowers EMR, Schempf T, Sahel JA, et al. Incorporating video visits into ophthalmology practice: a retrospective analysis and patient survey to assess initial experiences and patient acceptability at an academic eye center. Ophthalmol Ther. 2020;9(3):549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kelly SP, Wallwork I, Haider D, Qureshi K. Teleophthalmology with optical coherence tomography imaging in community optometry. Evaluation of a quality improvement for macular patients. Clin Ophthalmol (Auckland, NZ). 2011;5:1673–8.

    Google Scholar 

  29. Ribeiro AG, Rodrigues RA, Guerreiro AM, Regatieri CV. A teleophthalmology system for the diagnosis of ocular urgency in remote areas of Brazil. Arq Bras Oftalmol. 2014;77(4):214–8.

    Article  PubMed  Google Scholar 

  30. Flores-González ICD. Telemedicina para detección de enfermedades oculares con potencial de ceguera en México. Rev mex oftalmol. 2017;91(6):297–305.

    Google Scholar 

  31. Khalifa YM, Bogorad D, Gibson V, Peifer J, Nussbaum J. Virtual reality in ophthalmology training. Surv Ophthalmol. 2006;51(3):259–73.

    Article  PubMed  Google Scholar 

  32. Childs BS, Manganiello MD, Korets R. Novel education and simulation tools in urologic training. Curr Urol Rep. 2019;20(12):81.

    Article  PubMed  Google Scholar 

  33. Preece R. The current role of simulation in urological training. Cent European J Urol. 2015;68(2):207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Merri jr M, N., Bissonnette, V., Yilmaz, R., Ledwos, N., Winkler-Schwartz, A., & Del Maestro, R. F. The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PloS one. 2020;15(2).

    Google Scholar 

  35. Serna-ojeda JC G-hE, Guzmán-Salas PJ, Rodríguez-Loaiza JL. La simulación en la enseñanza de la oftalmología. Gac med mex. 2017;153(111).

    Google Scholar 

  36. Sikder S, Tuwairqi K, Al-Kahtani E, Myers WG, Banerjee P. Surgical simulators in cataract surgery training. Br J Ophthalmol. 2014;98(2):154–8.

    Google Scholar 

  37. Le TD, Adatia FA, Lam WC. Virtual reality ophthalmic surgical simulation as a feasible training and assessment tool: results of a multicentre study. Can J Ophthalmol. 2011;46(1):56–60.

    Article  PubMed  Google Scholar 

  38. Lucas LSS, Lottelli AC. Complications in the first 10 phacoemulsification cataract surgeries with and without prior simulator training. Arq Bras Oftalmol. 2019;82(4):289–94.

    Article  PubMed  Google Scholar 

  39. Gogate PJJ, Deshpande S, Naidoo K. Meta-analysis to compare the safety and efficacy of Manual Small Inicision Cataract Surgery and Phacoemulsification. Middle East Afr J Opthalmol. 2015;22(33):362–9.

    Article  Google Scholar 

  40. DA Belyea BS, Rajjoub LZ. Influence of surgery simulator training on ophthalmology resident phacoemulsification performance. J Cataract Refract Surg. 2011;37(10):1756–61.

    Article  PubMed  Google Scholar 

  41. Thomsen ASSP, Subhi Y, Cour M, Tang L, Saleh GM, et al. High correlation between performance on a virtual-reality simulator and real-life cataract surgery. Acta Ophthalmol. 2017;95(3):307–11.

    Article  PubMed  Google Scholar 

  42. Privett BGE, Rogers G, Oetting TA. Construct validity of a surgical simulator as a valid model for capsulorhexis training. J Cataract Refract Surg. 2010;36:1835–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the excellent technical assistance of Rafael González-Flores, Virtual Classroom and Multimedia Department, Instituto Mexicano de Oftalmología (IMO), Querétaro, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Charles Lansingh .

Editor information

Editors and Affiliations

Ethics declarations

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miguel, VM. et al. (2023). A Practical Guide to Telehealth in Ophthalmology. In: Yogesan, K., Goldschmidt, L., Cuadros, J., Ricur, G. (eds) Digital Eye Care and Teleophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-24052-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24052-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24051-5

  • Online ISBN: 978-3-031-24052-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics