Skip to main content

Beyond Predictions: Explainability and Learning from Machine Learning

  • Chapter
  • First Online:
Digital Eye Care and Teleophthalmology

Abstract

The intense interest in developing machine learning (ML) models for applications in ophthalmology has produced many potentially useful tools for disease detection, grading, and prognostication. However, though many of these efforts have produced well-validated models, the inner workings of these methods may not be easily understood by many clinicians, patients, and even ML practitioners. In this chapter, we focus on ML model explainability, and begin by first highlighting the utility and importance of explainability before presenting a clinician-accessible explanation of the commonly used methods and the type of insights these methods provide. Next, we present several case studies of ML studies incorporating explainability and describe these studies’ strengths as well as limitations. Finally, we discuss the important work that lies ahead, and how explainability may eventually help push the frontiers of scientific knowledge by enabling human experts to learn from what the machine has learned.

Chih-Ying Deng and Akinori Mitani contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.

    Article  PubMed  Google Scholar 

  2. Ting DSW, Cheung CY-L, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318:2211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. AbrĂ moff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sayres R, Taly A, Rahimy E, et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology. 2019;126:552–64.

    Article  PubMed  Google Scholar 

  5. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124:962–9.

    Article  PubMed  Google Scholar 

  6. Gulshan V, Rajan RP, Widner K, et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol. 2019;137:987–93.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala MG, Sadda SR, Solanki K. The value of automated diabetic retinopathy screening with the eyeart system: a study of more than 100,000 consecutive encounters from people with diabetes. Diabetes Technol Ther. 2019;21:635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee CS, Baughman DM, Lee AY. Deep learning is effective for the classification of OCT images of normal versus Age-related Macular Degeneration. Ophthalmol Retina. 2017;1:322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peng Y, Dharssi S, Chen Q, Keenan TD, Agrón E, Wong WT, Chew EY, Lu Z. DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology. 2019;126:565–75.

    Article  PubMed  Google Scholar 

  10. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Peters A, Heid IM, Palm C, Weber BHF. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125:1410–20.

    Article  PubMed  Google Scholar 

  11. Burlina PM, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA Ophthalmol. 2018;136:1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123:1974–80.

    Article  PubMed  Google Scholar 

  13. Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology. 2019;126:513–21.

    Article  PubMed  Google Scholar 

  14. Phene S, Dunn RC, Hammel N, et al. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. Ophthalmology. 2019;126:1627–39.

    Article  PubMed  Google Scholar 

  15. Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol. 2020;138:333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hood DC, De Moraes CG. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125:1207–8.

    Article  PubMed  Google Scholar 

  17. Redd TK, Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2018. https://doi.org/10.1136/bjophthalmol-2018-313156.

    Article  PubMed  Google Scholar 

  18. Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136:803–10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Milea D, Najjar RP, Zhubo J, et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382:1687–95.

    Article  PubMed  Google Scholar 

  20. Fang L, Cunefare D, Wang C, Guymer RH, Li S, Farsiu S. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express. 2017;8:2732–44.

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–50.

    Article  PubMed  Google Scholar 

  22. Vermeer KA, van der Schoot J, Lemij HG, de Boer JF. Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomed Opt Express. 2011;2:1743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, Podkowinski D, Gerendas BS, Langs G, Schmidt-Erfurth U. Fully automated detection and quantification of macular fluid in oct using deep learning. Ophthalmology. 2018;125:549–58.

    Article  PubMed  Google Scholar 

  24. Lu D, Heisler M, Lee S, Ding GW, Navajas E, Sarunic MV, Beg MF. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Med Image Anal. 2019;54:100–10.

    Article  PubMed  Google Scholar 

  25. Yan Q, Weeks DE, Xin H, Swaroop A, Chew EY, Huang H, Ding Y, Chen W. Deep-learning-based prediction of late age-related macular degeneration progression. Nat Mach Intell. 2020;2:141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Babenko B, Balasubramanian S, Blumer KE, Corrado GS, Peng L, Webster DR, Hammel N, Varadarajan AV. Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning. 2019. arXiv [cs.CV].

    Google Scholar 

  27. Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med. 2020;26:892–9.

    Article  CAS  PubMed  Google Scholar 

  28. Arcadu F, Benmansour F, Maunz A, Willis J, Haskova Z, Prunotto M. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit Med. 2019;2:92.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bora A, Balasubramanian S, Babenko B, et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health. 2020. https://doi.org/10.1016/S2589-7500(20)30250-8.

    Article  PubMed  Google Scholar 

  30. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–64.

    Article  PubMed  Google Scholar 

  31. Rim TH, Lee CJ, Tham Y-C, et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. Lancet Digit Health. 2021;3:e306–16.

    Article  CAS  PubMed  Google Scholar 

  32. Cheung CY, Xu D, Cheng C-Y, et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat Biomed Eng. 2021;5:498–508.

    Article  CAS  PubMed  Google Scholar 

  33. Son J, Shin JY, Chun EJ, Jung K-H, Park KH, Park SJ. Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms. Transl Vis Sci Technol. 2020;9:28.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, Hammel N, Liu Y, Varadarajan AV. Detection of anaemia from retinal fundus images via deep learning. Nat Biomed Eng. 2020;4:18–27.

    Article  PubMed  Google Scholar 

  35. Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit Health. 2020;2:e295–302.

    Article  PubMed  Google Scholar 

  36. Rim TH, Lee G, Kim Y, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit Health. 2020;2:e526–36.

    Article  PubMed  Google Scholar 

  37. Zhang K, Liu X, Xu J, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nat Biomed Eng. 2021;5:533–45.

    Article  CAS  PubMed  Google Scholar 

  38. Horton MB, Brady CJ, Cavallerano J, et al. Practice guidelines for ocular telehealth-diabetic retinopathy, 3rd ed. Telemed J E Health. 2020;26:495–543.

    Google Scholar 

  39. Selbst AD, Powles J. Meaningful information and the right to explanation. Int Data Priv Law. 2017;7:233–42.

    Article  Google Scholar 

  40. U.S. Food and Drug Administration. Executive summary for the patient engagement advisory committee meeting artificial intelligence (AI) and machine learning (ML) in medical devices. 2020. https://www.fda.gov/media/142998/download. Accessed 1 Jul 2021.

  41. Lapuschkin S, Wäldchen S, Binder A, Montavon G, Samek W, Müller K-R. Unmasking clever hans predictors and assessing what machines really learn. 2019. arXiv [cs.AI]

    Google Scholar 

  42. Singh A, Sengupta S, Lakshminarayanan V. Explainable deep learning models in medical image analysis. J Imaging. 2020;6:52.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Adadi A, Berrada M. Peeking Inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138–60.

    Article  Google Scholar 

  44. Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L. Interpretability of machine learning-based prediction models in healthcare. WIREs Data Min Knowl Discov. 2020. https://doi.org/10.1002/widm.1379.

    Article  Google Scholar 

  45. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy. 2020. https://doi.org/10.3390/e23010018.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Belle V, Papantonis I. (2020) Principles and practice of explainable machine learning. arXiv [cs.LG].

    Google Scholar 

  47. Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, et al. Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion. 2020;58:82–115.

    Article  Google Scholar 

  48. Ocular Hypertension Treatment Study Group, European Glaucoma Prevention Study Group, Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114:10–19.

    Google Scholar 

  49. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R, Zemel R, Bengio Y. Show, attend and tell: neural image caption generation with visual attention. 2015. arXiv [cs.LG].

    Google Scholar 

  50. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. 2015. arXiv [stat.ML].

    Google Scholar 

  51. Frosst N, Hinton G. Distilling a neural network into a soft decision tree. 2017.arXiv [cs.LG].

    Google Scholar 

  52. Arya V, Bellamy RKE, Chen P-Y, et al. One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. 2019.arXiv [cs.AI]

    Google Scholar 

  53. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?”: Explaining the predictions of any classifier. 2016. arXiv [cs.LG]

    Google Scholar 

  54. Lundberg S, Lee S-I. A unified approach to interpreting model predictions. 2017. arXiv [cs.AI].

    Google Scholar 

  55. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. 2015. arXiv [cs.CV]

    Google Scholar 

  56. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV). 2017. p. 618–26.

    Google Scholar 

  57. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: the all convolutional net. 2014. arXiv [cs.LG].

    Google Scholar 

  58. Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. 2017. arXiv [cs.LG]

    Google Scholar 

  59. Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: removing noise by adding noise. 2017. arXiv [cs.LG].

    Google Scholar 

  60. Xu S, Venugopalan S, Sundararajan M. Attribution in Scale and Space. 2020. arXiv [cs.CV].

    Google Scholar 

  61. Kapishnikov A, Bolukbasi T, Viégas F, Terry M. XRAI: Better Attributions Through Regions. 2019. arXiv [cs.CV].

    Google Scholar 

  62. Yang H-L, Kim JJ, Kim JH, Kang YK, Park DH, Park HS, Kim HK, Kim M-S. Weakly supervised lesion localization for age-related macular degeneration detection using optical coherence tomography images. PLoS ONE. 2019;14: e0215076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Erion G, Janizek JD, Sturmfels P, Lundberg SM, Lee S-I. Improving performance of deep learning models with axiomatic attribution priors and expected gradients. Nat Mach Intell 2021:1–12.

    Google Scholar 

  64. Sturmfels P, Lundberg S, Lee S-I. Visualizing the impact of feature attribution baselines. Distill. 2020. https://doi.org/10.23915/distill.00022.

  65. Goyal Y, Wu Z, Ernst J, Batra D, Parikh D, Lee S. Counterfactual visual explanations. 2019. arXiv [cs.LG]

    Google Scholar 

  66. Olah C, Mordvintsev A, Schubert L. Feature visualization. Distill. 2017. https://doi.org/10.23915/distill.00007.

  67. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. 2013. arXiv [cs.CV].

    Google Scholar 

  68. Inceptionism: Going Deeper into Neural Networks. In: Google AI Blog. http://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed 15 Jun 2021.

  69. DeepDream—a code example for visualizing Neural Networks. In: Google AI Blog. http://ai.googleblog.com/2015/07/deepdream-code-example-for-visualizing.html. Accessed 15 Jun 2021.

  70. Hinton G, Roweis S. Stochastic neighbor embedding. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA:MIT Press; 2002. p 857–64.

    Google Scholar 

  71. Wattenberg M, Viégas F, Johnson I. How to use t-SNE effectively. Distill. 2016. https://doi.org/10.23915/distill.00002.

  72. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.

    Google Scholar 

  73. Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, Viegas F, Sayres R. Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). 2017. arXiv [stat.ML].

    Google Scholar 

  74. Ghorbani A, Wexler J, Zou J, Kim B. Towards automatic concept-based explanations. 2019. arXiv [stat.ML].

    Google Scholar 

  75. Pruthi G, Liu F, Sundararajan M, Kale S. Estimating training data influence by tracing gradient descent. 2020. arXiv [cs.LG].

    Google Scholar 

  76. Singh A, Jothi Balaji J, Rasheed MA, Jayakumar V, Raman R, Lakshminarayanan V. Evaluation of explainable deep learning methods for ophthalmic diagnosis. Clin Ophthalmol. 2021;15:2573–81.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Montavon G, Bach S, Binder A, Samek W, MĂĽller K-R. Explaining nonlinear classification decisions with deep Taylor decomposition. 2015. arXiv [cs.LG].

    Google Scholar 

  78. American Medical Association. Augmented intelligence in health care policy report. 2018. https://www.ama-assn.org/system/files/2019-01/augmented-intelligence-policy-report.pdf. Accessed 30 Jun 2020

  79. Vislisel J. Normal fundus—child. In: University of Iowa Health Care Ophthalmology and Visual Sciences EyeRounds.org. https://webeye.ophth.uiowa.edu/eyeforum/atlas/pages/normal-fundus-child/index.htm. Accessed 21 Jun 2021

  80. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. 2015. arXiv [cs.CV].

    Google Scholar 

  81. Wong RL, Tsang CW, Wong DS, McGhee S, Lam CH, Lian J, Lee JW, Lai JS, Chong V, Wong IY. Are we making good use of our public resources? The false-positive rate of screening by fundus photography for diabetic macular oedema. Hong Kong Med J. 2017;23:356–64.

    PubMed  Google Scholar 

  82. Varadarajan AV, Bavishi P, Ruamviboonsuk P, et al. Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nat Commun. 2020;11:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Narayanaswamy A, Venugopalan S, Webster DR, Peng L, Corrado GS, Ruamviboonsuk P, Bavishi P, Brenner M, Nelson PC, Varadarajan AV. Scientific discovery by generating counterfactuals using image translation. In: Medical image computing and computer assisted intervention—MICCAI 2020. Springer International Publishing; 2020. p. 273–83.

    Google Scholar 

  84. Babenko B, Mitani A, Traynis I, et al. Detection of signs of disease in external photographs of the eyes via deep learning. Nat. Biomed Eng. 2022;6:1370–83.

    Google Scholar 

  85. Banaee T, Pourreza H, Doosti H, Abrishami M, Ehsaei A, Basiry M, Pourreza R. Distribution of different sized ocular surface vessels in diabetics and normal individuals. J Ophthalmic Vis Res. 2017;12:361–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. DeGrave AJ, Janizek JD, Lee S-I. AI for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell. 2021:1–10.

    Google Scholar 

  87. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017. arXiv [cs.CV].

    Google Scholar 

  88. Wulczyn E, Steiner DF, Moran M, et al. Interpretable survival prediction for colorectal cancer using deep learning. NPJ Digit Med 2021;4:1–13.

    Google Scholar 

  89. Raghunath S, Ulloa Cerna AE, Jing L, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat Med. 2020;26:886–91.

    Article  CAS  PubMed  Google Scholar 

  90. Raghunath S, Ulloa Cerna AE, Jing L, et al. Deep neural networks can predict mortality from 12-lead electrocardiogram voltage data. 2019. arXiv [q-bio.QM].

    Google Scholar 

  91. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. Sanity checks for saliency maps. 2018. arXiv [cs.CV].

    Google Scholar 

  92. Hossain MDZ, Sohel F, Shiratuddin MF, Laga H. A comprehensive survey of deep learning for image captioning. ACM Comput Surv. 2019;51:1–36.

    Article  CAS  Google Scholar 

  93. Monshi MMA, Poon J, Chung V. Deep learning in generating radiology reports: a survey. Artif Intell Med. 2020;106: 101878.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Huang J-H, Yang C-HH, Liu F, et al. DeepOpht: medical report generation for retinal images via deep models and visual explanation. 2020. arXiv [cs.CV].

    Google Scholar 

  95. Borland D, Taylor MR 2nd. Rainbow color map (still) considered harmful. IEEE Comput Graph Appl. 2007;27:14–7.

    Article  PubMed  Google Scholar 

  96. Rogowitz BE, Treinish LA, Bryson S. How Not to Lie with Visualization. Comput Phys. 1996;10:268–73.

    Article  Google Scholar 

  97. Nabulsi Z, Sellergren A, Jamshy S, et al. Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to unseen diseases. 2020. arXiv [eess.IV].

    Google Scholar 

  98. Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, Olson N, Peng LH, Hipp JD, Stumpe MC. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2019;143:859–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our sincere appreciation goes to Boris Babenko‬, Avinash Varadarajan, and Dale Webster for manuscript review and helpful discussions.‬‬‬‬‬‬‬‬‬‬‬‬‬

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, CY., Mitani, A., Chen, C.W., Peng, L.H., Hammel, N., Liu, Y. (2023). Beyond Predictions: Explainability and Learning from Machine Learning. In: Yogesan, K., Goldschmidt, L., Cuadros, J., Ricur, G. (eds) Digital Eye Care and Teleophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-24052-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24052-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24051-5

  • Online ISBN: 978-3-031-24052-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics