Skip to main content

Abstract

This chapter is a kind of introduction to the subject of gas sensing, which is discussed in the following chapters. In particular, the need to control the composition of the gas atmosphere in various fields from environmental monitoring and process control to medicine and agriculture is substantiated. It also provides a classification and description of the principles of operation of various sensors used to detect toxic and explosive gases. The properties of II-VI compounds are compared with those of metal oxides, and a conclusion is made about the prospects of these compounds for the development of efficient gas sensors, such as conductometric and optical gas sensors. Examples of the implementation of such sensors based on II-VI compounds are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleaver KD. The analysis of process gases: a review. Accred Qual Assur. 2001;6(1):8–15.

    Article  Google Scholar 

  2. Yamazoe N. Toward innovations of gas sensor technology. Sens Actuators B Chem. 2005;108:2–14.

    Google Scholar 

  3. Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 6, Sensors application. New York: Momentum Press; 2011a.

    Google Scholar 

  4. Fine GF, Cavanagh LM, Afonja A, Binions R. Metal oxide semiconductor gas sensors in environmental monitoring. Sensors. 2010;10:5469–502.

    Article  ADS  Google Scholar 

  5. Docquier N, Candel S. Combustion control and sensor: a review. Prog Energy Combustion Sci. 2002;28:107–50.

    Article  Google Scholar 

  6. Kowaiski BR, Bender CF. Pattern recognition: a powerful approach to interpreting chemical data. J Am Chem Soc. 1972;94:5632–9.

    Article  Google Scholar 

  7. Gardner JW. Detection of vapours and odours from a multisensor array using pattern recognition: principal component and cluster analysis. Sens Actuators. 1991;4:109–15.

    Google Scholar 

  8. Gardner JW, Bartlett PN. Electronic noses. Principles and applications. Oxford, UK: Oxford University Press; 1999.

    Google Scholar 

  9. Korotcenkov G, Stetter JR. Chemical gas mixture analysis and the electronic nose: current status, future trends. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 6. Chemical sensors applications. New York: Momentum Press; 2011. p. 1–56.

    Google Scholar 

  10. Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9:5099–148.

    Article  ADS  Google Scholar 

  11. Kharitonov SA, Barnes PJ. Clinical aspects of exhaled nitric oxide. Eur Respir J. 2000;16:781–92.

    Article  Google Scholar 

  12. Cao W, Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem. 2006;52(5):800–11.

    Article  Google Scholar 

  13. Korotcenkov G. Chemical sensors: comprehensive sensor technologies. Vol. 4: Solid state devices. New York: Momentum Press; 2011.

    Google Scholar 

  14. Korotcenkov G. Chemical sensors: comprehensive sensor technologies. Vol. 5: Electrochemical and optical sensors. New York: Momentum Press; 2011.

    Google Scholar 

  15. Korotcenkov G, Han S-D, Stetter JR. Review of electrochemical hydrogen sensors. Chem Rev. 2009;109(3):1402–33.

    Article  Google Scholar 

  16. Stetter JR, Korotcenkov G, Zeng X, Tang Y, Liu Y. Electrochemical gas sensors: fundamentals, fabrication and parameters. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 3: Electrochemical and optical sensors. New York: Momentum Press; 2011. p. 1–123.

    Google Scholar 

  17. Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Myers E, Roukes ML. Gas sensors based on gravimetric detection—A review. Sens Actuators B. 2011;160:804–21.

    Article  Google Scholar 

  18. Miller JB. Catalytic sensors for monitoring explosive atmospheres. IEEE Sensors J. 2001;1(1):88–93.

    Article  ADS  Google Scholar 

  19. Korotcenkov G. Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem. 2007;121:664–78.

    Google Scholar 

  20. Merilainen PT. A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit. 1990;6(1):65–73.

    Article  Google Scholar 

  21. Ho CK, Robinson A, Miller DR, Davis MJ. Overview of sensors and needs for environmental monitoring. Sensors. 2005;5:4–37.

    Article  ADS  Google Scholar 

  22. Chou J. Hazardous gas monitors: a practical guide to selection, operation and application. New York: McGraw-Hill; 2000.

    Google Scholar 

  23. Potyrailo RA, Mirsky VM. Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev B. 2008;108:770–813.

    Article  Google Scholar 

  24. Korotcenkov G, editor. Chemical sensors: fundamentals of sensor materials, vol. 1-3. New York: Momentum Press; 2010.

    Google Scholar 

  25. Sadaoka Y. Organic semiconductor gas sensors. In: Sberveglieri G, editor. Gas sensors. Dordrecht: Kluwer Academic; 1992. p. 187–218.

    Chapter  Google Scholar 

  26. Monkman G. Monomolecular Langmuir-Blodgett films—Tomorrow’s sensors? Sensor Rev. 2000;20:127–31.

    Article  Google Scholar 

  27. Talazac L, Brunet J, Battut V, Blanc JP, Pauly A, Germain JP, Pellier S, Soulier C. Air quality evaluation by monolithic InP-based resistive sensors. Sens Actuators B Chem. 2001;76:258–64.

    Google Scholar 

  28. Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors: a comprehensive review. Crit Rev Solid State Mater Sci. 2004;29:111–88.

    Article  ADS  Google Scholar 

  29. Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci. 2004;29:699–766.

    Article  Google Scholar 

  30. Korotcenkov G. Handbook of gas sensor materials, vol. 1 and 2. New York: Springer; 2013.

    Book  Google Scholar 

  31. Korotcenkov G. Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B. 2007;139:1–23.

    Article  Google Scholar 

  32. Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagir G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798.

    Article  Google Scholar 

  33. Eom NSA, Kim T-S, Choa Y-H, Kim W-B, Kim BS. Surface oxidation behaviors of cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14:8024–7.

    Article  Google Scholar 

  34. Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, Hiie J. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.

    Article  Google Scholar 

  35. Zajac AT. On the thermally oxidized CdS as a photoactive material. New J Chem. 2019;43:8892–902.

    Article  Google Scholar 

  36. Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22:1433–6.

    Article  ADS  Google Scholar 

  37. Seker F, Meeker K, Kuech TF, Ellis AB. Surface chemistry of prototypical bulk II−VI and III−V semiconductors and implications for chemical sensing. Chem Rev. 2000;100:2505–36.

    Article  Google Scholar 

  38. Korotcenkov G, Sysoev V. Conductometric metal oxide gas sensors. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 4. Solid state devices. New York: Momentum Press; 2011. p. 53–186.

    Google Scholar 

  39. Semancik S, Cavicchi RE, Wheeler MC, Tiffany JF, Poirier GE, Walton RM, et al. Microhotplate platform for chemical sensor research. Sens Actuators B Chem. 2001;77:579–91.

    Google Scholar 

  40. Korotcenkov G, Cho BK. Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B. 2017;244:182–210.

    Google Scholar 

  41. Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V. The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem. 2007;128:51–63.

    Google Scholar 

  42. Barsan N, Schierbaum K, editors. Gas sensors based on conducting metal oxides, Elsevier metal oxide series. Korotcenkov G, editor. Cambridge, MA: Elsevier; 2018. ISBN: 9780128112243.

    Google Scholar 

  43. Brinzari V, Korotcenkov G. Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration. Sens Actuators B. 2018;259:443–54.

    Article  Google Scholar 

  44. Brynzari V, Korotchenkov G, Dmitriev S. Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol. 2000;33:225–35.

    Google Scholar 

  45. Korotcenkov G, editor. Chemical sensors: simulation and modeling. Vol. 2: Conductometric gas sensors. New York: Momentum Press; 2012.

    Google Scholar 

  46. Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro - and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5.

    Google Scholar 

  47. Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R. 2008;61(2008):1–39.

    Article  Google Scholar 

  48. Lantto V, Golovanov V. A comparison of conductance behaviour between SnO2 and CdS gas-sensitive films. Sens Actuators B Chem. 1995;24-25:614–8.

    Google Scholar 

  49. Xu L, Song H, Zhang T, Fan H, Fan L, Wang Y, Dong B, Bai X. A novel ethanol gas sensor-ZnS/cyclohexylamine hybrid nanowires. J Nanosci Nanotechnol. 2011;11(3):2121–5.

    Article  Google Scholar 

  50. Afify HH, Battisha IK. Oxygen interaction with CdS based gas sensors by varying different preparation parameters. Ind J Pure Appl Physics. 2000;38(2):119–26.

    Google Scholar 

  51. Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1997;68(10):3898–902.

    Article  ADS  Google Scholar 

  52. Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies. Vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018.

    Google Scholar 

  53. Wolfbeis OS. Fiber optic chemical sensors and biosensors, vol. 1 and 2. Boca Raton: CRC Press; 1991/1992.

    Google Scholar 

  54. Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum Press; 1999.

    Book  Google Scholar 

  55. Valeur B, Brochon JC, editors. New trends in fluorescence spectroscopy: applications to chemical and life sciences. Berlin: Springer; 2001.

    Google Scholar 

  56. Baldini F, Chester AN, Homola J, Martellucci S, editors. Optical chemical sensors. Dordrecht: Springer; 2006.

    Google Scholar 

  57. Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985;56:921–4.

    Article  ADS  Google Scholar 

  58. Costa-Fernandez JM. Optical sensors based on luminescent quantum dots. Anal Bioanal Chem. 2006;384:37–40.

    Article  Google Scholar 

  59. Jorge P, Martins MA, Trindade T, Santos JL, Farahi F. Optical fiber sensing using quantum dots. Sensors. 2007;7:3489–534.

    Article  ADS  Google Scholar 

  60. Callan JF, De Silva AP, Mulrooney RC, McCaughan B. Luminescent sensing with quantum dots. J Incl Phenom Macrocycl Chem. 2007;58:257–62.

    Article  Google Scholar 

  61. Smith AM, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 2010;43(2):190–200.

    Article  Google Scholar 

  62. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–7.

    Article  ADS  Google Scholar 

  63. Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004;14:497–504.

    Article  Google Scholar 

  64. Chen W, Wang Z, Lin Z, Lin L, Efros AL, Rosen M. Absorption and luminescence of the surface states in ZnS nanoparticles. J Appl Phys. 1997;82:3111–5.

    Article  ADS  Google Scholar 

  65. Luo L, Chen H, Zhang L, Xu K, Lv Y. A cataluminescence gas sensor for carbon tetrachloride based on nanosized ZnS. Anal Chim Acta. 2009;635:183–7.

    Article  Google Scholar 

  66. Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 2002;74:5132–8.

    Article  Google Scholar 

  67. Nazzal AY, Qu L, Peng X, Min XM. Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 2003;3(6):819–22.

    Article  ADS  Google Scholar 

  68. Potyrailo RA, Leach AM. Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl Phys Lett. 2006;88(13):134110.

    Article  ADS  Google Scholar 

  69. Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA. Surface-functionalized CdSe quantum dots for the detection of hydrocarbons. Sens Actuators B Chem. 2007;123:522–9.

    Google Scholar 

  70. Norhayati AB, Aidhia R, Akrajas AU, Muhamad MS, Yahaya M. Fluorescence gas sensor using CdTe quantum dots film to detect volatile organic compounds. Mater Sci Forum. 2010;663-665:276–9.

    Article  Google Scholar 

  71. Mohanta D, Nath SS, Mishara NC, Choudhury A. Irradiation induced gain growth and surface emission enhancement of ZnS:Mn/PVOH semiconductor nano particles by Cl+9 ion impact. Bull Mater Sci. 2003;26:289–94.

    Article  Google Scholar 

  72. Xu H, Wu J, Chen C-H, Zhang L, Yang K-L. Detecting hydrogen sulfide by using transparent polymer with embedded CdSe/CdS quantum dots. Sens Actuators B Chem. 2010;143:535–8.

    Google Scholar 

  73. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals. J Phys Chem. 1996;100:468–71.

    Article  Google Scholar 

  74. Xie R, Kolb U, Li J, Basché T, Mews A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc. 2005;127:7480–8.

    Article  Google Scholar 

  75. Chaudhuri RD, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–433.

    Article  Google Scholar 

Download references

Acknowledgments

G.K. and V.B. are grateful to the State Program of the Republic of Moldova, project 20.80009.5007.02, for supporting their research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotcenkov, G., Brinzari, V. (2023). Introduction in Gas Sensing. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_6

Download citation

Publish with us

Policies and ethics