Skip to main content

Basic Principles of Solid-State X-Ray Radiation Detector Operation

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors
  • 930 Accesses

Abstract

The basic principle of operation of an X-ray detector is described through the X-ray interactions with the photoconductor, the ionization energy, and signal formulation mechanisms in photoconductive radiation detectors. Typical X-ray radiation detector materials and structures are also described. The X-ray detectors are classified based on their applications. The spectroscopic detector operation is explained, and its energy resolution is discussed. Flat panel X-ray imagers (FPXIs) are described in detail due to their extensive use in imaging, especially, in medical X-ray imaging. The materials for direct conversion detectors (the absorbed X-ray photons directly create charge carriers in the photoconductor) and various image read-out devices (e.g., a-Si:H TFT and CMOS active-matrix technologies) are discussed. The imaging performance of FPXIs critically depends on the photoconductor material used in the X-ray detector. This chapter discusses the effects of charge carrier transport properties on the imaging performances such as X-ray sensitivity, resolution in terms of modulation transfer function, detective quantum efficiency, image lag, and ghosting. A brief introduction to the X-ray interaction position sensitive semiconductor detector structures and the effects of small pixels on charge collection and resolution are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM. The essential physics of medical imaging. 3rd ed. Wolters Kluwer; 2012. p. 19.

    Google Scholar 

  2. Kasap SO, Kabir MZ. Chapter 20: X-ray detectors. In: Rudan M, et al., editors. Springer handbook of semiconductor devices. Cham: Springer Nature; 2022.

    Google Scholar 

  3. Owens A. Semiconductor radiation detectors. Boca Raton: CRC Press; 2019.

    Book  Google Scholar 

  4. Kabir MZ. Dark current mechanisms in amorphous selenium-based photoconductive detectors: an overview and re-examination. J Mater Sci Mater Electron. 2015;26:4659–67.

    Article  Google Scholar 

  5. Martz HE, Logan CM, Schneberk DJ, Shull PJ. X-ray imaging: fundamentals, industrial techniques, and applications. Boca Raton: CRC Press; 2017.

    Google Scholar 

  6. Klein CA. Bandgap dependence and related features of radiation ionization energies in semiconductors. J Appl Phys. 1968;39:2029–38.

    Article  ADS  Google Scholar 

  7. Que W, Rowlands JA. X-ray photogeneration in amorphous selenium: geminate versus columnar recombination. Phys Rev B. 1995;51:10500–7.

    Article  ADS  Google Scholar 

  8. Blevis I, Hunt DC, Rowlands JA. Measurement of X-ray photogeneration in amorphous selenium. J Appl Phys. 1999;85:7958–63.

    Article  ADS  Google Scholar 

  9. Mah D, Rowlands JA, Rawlinson JA. Sensitivity of amorphous selenium to x rays from 40 kVp to 18 MV: Measurements and implications for portal imaging. Med Phys. 1998;25:444–56.

    Article  Google Scholar 

  10. Bubon O, Jandieri K, Baranovskii SD, Kasap SO, Reznik A. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se X-ray detectors. J Appl Phys. 2016;119:124511.

    Article  ADS  Google Scholar 

  11. Kabir MZ, Arnab SM, Hijazi N. Electron-hole pair creation energy in amorphous selenium: geminate versus columnar recombination. J Mater Sci Mater Electron. 2019;30:21059.

    Article  Google Scholar 

  12. Shockley W. Currents to conductors induced by a moving point charge. J Appl Phys. 1938;9:635–6.

    Article  ADS  Google Scholar 

  13. Ramo S. Current induced by electron motion. Proc IRE. 1939;27:584–5.

    Article  Google Scholar 

  14. He Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Instr Meth Phys Res A. 2001;463:250–67.

    Article  ADS  Google Scholar 

  15. Kabir MZ, Kasap SO. Charge collection and absorption-limited X-ray sensitivity of pixellated X-ray detectors. J Vac Sci Technol A. 2004;22:975–80.

    Article  Google Scholar 

  16. Kasap SO. Optoelectronics and photonics: principles and practices. Upper Saddle River: Prentice-Hall; 2001, Ch. 5.

    Google Scholar 

  17. Kabir MZ. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J Appl Phys. 2008;104:074506.

    Article  ADS  Google Scholar 

  18. Kasap SO, Kabir MZ, Ramaswami KO, Johanson RE, Curry RJ. Charge collection efficiency in the presence of non-uniform carrier drift mobilities and lifetimes in photoconductive detectors. J Appl Phys. 2020;128:124501.

    Article  ADS  Google Scholar 

  19. Ramaswami K, Johanson R, Kasap S. Charge collection efficiency in photoconductive detectors under small to large signals. J Appl Phys. 2019;125:244503.

    Article  ADS  Google Scholar 

  20. Kasap SO, Kabir MZ, Rowlands JA. Recent advances in X-ray photoconductors for direct conversion X-ray image sensors. Curr Appl Phys. 2006;6:288–92.

    Article  ADS  Google Scholar 

  21. Mirzaei A, Huh J-S, Kim SS, Kim HW. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview. Electron Mater Lett. 2018;14:261.

    Article  ADS  Google Scholar 

  22. Pennicard D, Pirard B, Tolbanov O, Iniewski K. Semiconductor materials for X-ray detectors. MRS Bull. 2017;42:445–50.

    Article  ADS  Google Scholar 

  23. Capasso F. Band-gap engineering: from physics and materials to new semiconductor devices. Science. 1987;235(4785):172–6.

    Article  ADS  Google Scholar 

  24. Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci. 2001;48:950–9.

    Article  ADS  Google Scholar 

  25. Szeles C, Cameron SE, Ndap J-O, Chalmer WC. Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications. IEEE Trans Nucl Sci. 2002;49:2535.

    Article  ADS  Google Scholar 

  26. Owens A, Peacock A. Compound semiconductor radiation detectors. Nucl Instr Methods Phys Res A. 2004;531:18–37.

    Article  ADS  Google Scholar 

  27. Sellin PJ. Recent advances in compound semiconductor radiation detectors. Nuclear Instr Methods Phys Res A. 2003;513:332–9.

    Article  ADS  Google Scholar 

  28. Owens A. Semiconductor materials and radiation detection. J Synchrotron Radiat. 2006;13:143–50.

    Article  Google Scholar 

  29. Sordo SD, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009;9:3491–526.

    Article  ADS  Google Scholar 

  30. Szeles C. CdZnTe and CdTe crystals for medical applications. In: Iwanczyk JS, editor. Radiation detectors for medical imaging. Boca Raton: CRC Press; 2016. p. 1–28.

    Google Scholar 

  31. Owens A. Photonductive materials. In: Kasap SO, editor. Photonductivity and photonductive materials. Chichester: Wiley & Sons; 2022.

    Google Scholar 

  32. Kabir MZ, Kasap SO. Photoconductors for direct conversion X-ray image detectors. In: Kasap SO, Capper P, editors. Springer handbook of electronic and photonic materials, 2nd edition. Springer Academic Publishers; 2017. p. 1125–47.

    Google Scholar 

  33. Kabir MZ. X-ray photoconductivity and typical large area X-ray photoconductors. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley & Sons; 2022. p. 613–42.

    Chapter  Google Scholar 

  34. Lioliou G, Meng X, Ng JS, Barnett AM. Characterization of gallium arsenide X-ray mesa p-i-n photodiodes at room temperature. Nucl Instr Methods Phys Res A. 2016;813:1–9.

    Article  ADS  Google Scholar 

  35. Owens A, Bavdaz M, Peacock A, Poelaert A. High resolution X-ray spectroscopy using GaAs arrays. J Appl Phys. 2001;90:5376.

    Article  ADS  Google Scholar 

  36. Lees JE, Barnett AM, Bassford DJ, Stevens RC, Horsfall AB. SiC X-ray detectors for harsh environments. J Instrum. 2011;6:1–9. https://doi.org/10.1088/1748-0221/6/01/C01032.

    Article  Google Scholar 

  37. Bertuccioa G, Caccia S, Puglisi D, Macera D. Advances in silicon carbide X-ray detectors. Nucl Instr Methods Phys Res A. 2011;652:193–6.

    Article  ADS  Google Scholar 

  38. Wang J, Mulligan P, Brillson L, Cao LR. Review of using gallium nitride for ionizing radiation detection. Appl Phys Rev. 2015;2:031102.

    Article  Google Scholar 

  39. Duboz JY, Lauegt M, Schenk D, Beaumont B, Reverchon JL, Wieck AD, Zimmerling T. GaN for X-ray detection. Appl Phys Lett. 2008;92(26):263501.

    Article  ADS  Google Scholar 

  40. Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 2000.

    Google Scholar 

  41. Tsoulfanidis N, Landsberger S. Measurement and detection of radiation, 4th Edition. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  42. Fano U. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev. 1947;72:26.

    Article  ADS  Google Scholar 

  43. Kabir MZ, Kasap SO. Dependence of the DQE of photoconductive X-ray detectors on charge transport and trapping. SPIE Proc. 2002;4682:42–52.

    Article  ADS  Google Scholar 

  44. Ruzin A, Nemirovsky Y. Statistical models for charge collection efficiency and variance in semiconductor spectrometers. J Appl Phys. 1997;82:2754–8.

    Article  ADS  Google Scholar 

  45. Mainprize JG, Hunt DC, Yaffe MJ. Direct conversion detectors: the effect of incomplete charge collection on detective quantum efficiency. Med Phys. 2002;29:976–90.

    Article  Google Scholar 

  46. Barton P, Amman M, Martin R, Vetter K. Ultra-low noise mechanically cooled germanium detector. Nucl Instr Methods Phys Res A. 2016;812:17–23.

    Article  ADS  Google Scholar 

  47. Markus K, Weber CH, Wirth S, Pfeifer K-J, et al. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27:675–86.

    Article  Google Scholar 

  48. Spahn M. Flat detectors and their clinical applications. Eur Radiol. 2005;15:1934.

    Article  Google Scholar 

  49. Cowen AR, Kengyelics SM, Davies AG. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin Radiol. 2008;63:487–98.

    Article  Google Scholar 

  50. Spahn M. X-ray detectors in medical imaging. Nucl Instr Methods Phys Res A. 2013;731:57–63.

    Article  ADS  Google Scholar 

  51. Kasap SO, Frey JB, Belev G, Tousignant O, Mani H, Greenspan J, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors. 2011;11:5112.

    Article  ADS  Google Scholar 

  52. Yorkston J. Recent developments in digital radiography detectors. Nucl Instr Methods Phys Res A. 2007;580:974–85.

    Article  ADS  Google Scholar 

  53. Karim K. Active matrix flat panel imagers. In: Iniewski K, editor. Medical imaging. New York: Wiley & Sons Inc; 2009. p. 23–58.

    Chapter  Google Scholar 

  54. Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys Med Biol. 2014;59:R303–47.

    Article  ADS  Google Scholar 

  55. Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital breast Tomosynthesis: state of the art. Radiology. 2015;277:663–84.

    Article  Google Scholar 

  56. Panetta D. Advances in X-ray detectors for clinical and preclinical computed tomography. Nucl Instr Methods Phys Res A. 2016;809:2–12.

    Article  ADS  Google Scholar 

  57. Zhao W. Ch. 3: Detectors for tomosynthesis. In: Reiser I, Glick S, editors. The tomosynthesis imaging. Boca Raton: CRC Press; 2017.

    Google Scholar 

  58. Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications. Nucl Instr Methods Phys Res A. 2018;878:74–87.

    Article  ADS  Google Scholar 

  59. Rowlands JA, Yorkston J. Ch.4: Flat panel detector for digital radiography. In: Beutel J, Kundel HL, Van Metter RL, editors. Handbook of medical imaging, vol. 1. Bellingham, Washington: SPIE Press; 2000. p. 225–313.

    Google Scholar 

  60. Jiang H, Zhao Q, Antonuk LE, El-Mohri Y, Gupta T. Development of active-matrix flat panel imagers incorporating thin layers of polycrystalline HgI2 for mammographic X-ray imaging. Phys Med Biol. 2013;58:703–14.

    Article  Google Scholar 

  61. Veale MC. Ch. 3: CdTe and CdZnTe Small pixel imaging detectors. In: Awadalla S, editor. Solid-state radiation detectors: technology and applications. Boca Raton: CRC Press; 2015.

    Google Scholar 

  62. Yin S, Tümer TO, Maeding D, Mainprize J, Mawdsley G, Yaffe MJ, Gordon EE, Hamilton WJ. Direct conversion CdZnTe and CdTe detectors for digital mammography. IEEE Trans Nucl Sci. 2002;49:176–81.

    Article  ADS  Google Scholar 

  63. Mainprize JG, Ford NL, Yin S, Gordon EE, Hamilton WJ, Tümer TO, Yaffe MJ. A CdZnTe slot-scanned detector for digital mammography. Med Phys. 2002;29:2767–81.

    Article  Google Scholar 

  64. Hellier K, Benard E, Scott CC, Karim KS, Abbaszadeh S. Recent progress in the development of a-se/CMOS sensors for X-ray detection. Quantum Beam Sci. 2021;5:29.

    Article  ADS  Google Scholar 

  65. Farrier M, Achterkirchen TG, Weckler GP, Mrozack A. Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans Electron Devices. 2009;56:2623–31.

    Article  ADS  Google Scholar 

  66. Hartsough NE, Iwanczyk JS, Nygard E, Malakhov N, Barber WC, Gandhi T. Polycrystalline mercuric iodide films on CMOS readout arrays. IEEE Trans Nucl Sci. 2009;56:1810–6.

    Article  ADS  Google Scholar 

  67. Konstantinidis AC, Szafraniec MB, Speller RD, Olivo A. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl Instr Methods Phys Res A. 2012;689:12–21.

    Article  ADS  Google Scholar 

  68. Yaffe MJ. Ch. 2: Detectors for digital mammography. In: Bick U, Diekmann F, editors. Digital mammography. Medical radiology. Berlin, Heidelberg: Springer; 2010.

    Google Scholar 

  69. Kasap SO, Koughia KV, Fogal B, Belev G, Johanson RE. The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors. 2003;37:789–94.

    Article  ADS  Google Scholar 

  70. Kasap SO. Doped and stabilized amorphous selenium single and multilayer photoconductive layers for X-ray imaging detector applications. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley; 2022. p. 715–80.

    Chapter  Google Scholar 

  71. Mahmood SA, Kabir MZ, Tousignant O, Mani H, Greenspan J, Botka P. Dark current in multilayer amorphous selenium X-ray imaging detectors. Appl Phys Lett. 2008;92:223506.

    Article  ADS  Google Scholar 

  72. Polischuk BT, Jean A. Multilayer plate for X-ray imaging and method of producing same. US Patent 5,880,472; 1999.

    Google Scholar 

  73. Frey JB, Belev G, Tousignant O, Mani H, Laperriere L, Kasap SO. Dark current in multilayer stabilized amorphous selenium based photoconductive X-ray detectors. J Appl Phys. 2012;112:014502.

    Article  ADS  Google Scholar 

  74. Frey JB, Sadasivam K, Belev G, Mani H, Laperriere L, Kasap SO. Dark current–voltage characteristics of vacuum deposited multilayer amorphous selenium-alloy detectors and the effect of X-ray irradiation. J Vac Sci Technol A. 2019;37:061501.

    Article  Google Scholar 

  75. Matsuura N, Zhao W, Huang Z, Rowlands JA. Digital radiology using active matrix readout: amplified pixels for fluoroscopy. Med Phys. 1999;26:672–81.

    Article  Google Scholar 

  76. Pang G, Lee DL, Rowlands JA. Investigation of a direct conversion flat panel imager for portal imaging. Med Phys. 2001;28:2121–8.

    Article  Google Scholar 

  77. Pang G, Rowlands JA. Development of high quantum efficiency flat panel detectors for portal imaging: intrinsic spatial resolution. Med Phys. 2002;29:2274–85.

    Article  Google Scholar 

  78. Zhao W, Ji W, Debrie A, Rowlands JA. Imaging performance of amorphous selenium based flat panel detectors for mammography: characterization of small area prototype detector. Med Phys. 2003;30:254–63.

    Article  Google Scholar 

  79. Hunt DC, Tousignant O, Rowlands JA. Evaluation of the imaging properties of an amorphous selenium-based flat panel detector for digital fluoroscopy. Med Phys. 2004;31:1166–75.

    Article  Google Scholar 

  80. Zhao W, Hunt DC, Tanioka K, Rowlands JA. Amorphous selenium flat panel detectors for medical applications. Nucl Instr Methods Phys Res A. 2005;549:205–9.

    Article  ADS  Google Scholar 

  81. Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl Instr Methods Phys Res A. 2010;624:114–7.

    Article  ADS  Google Scholar 

  82. Bennett PR, Shah KS, Cirignano LJ, Klugerman MB, Moy LP, Squillante MR. Characterization of polycrystalline TlBr films for radiographic detectors. IEEE Trans Nuclear Sci. 1999;46:689–93.

    Article  Google Scholar 

  83. Yun M, Cho S, Lee R, Jang G, Kim Y, Shin W, Nam S. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn J Appl Phys. 2010;49:041801–5.

    Article  ADS  Google Scholar 

  84. Shah KS, Street RA, Dmitriyev Y, Bennett P, Cirignano L, Klugermaa M, Squillante MR, Entine G. X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl Instr Methods Phys Res A. 2001;458:140–7.

    Article  ADS  Google Scholar 

  85. Zhu X, Sun H, Yang D, Wangyang P, X. Gao: Comparison of electrical properties of X-ray detector based on PbI2 crystal with different bias electric field configuration. J Mater Sci Mater Electron. 2016;27:11798–803.

    Article  Google Scholar 

  86. Street RA, Ready SE, Lemmi F, Shah KS, Bennett P, Dmitriyev Y. Electronic transport in polycrystalline Pbl2 films. J Appl Phys. 1999;86:2660–7.

    Article  ADS  Google Scholar 

  87. Zhao Q, Antonuk LE, El-Mohri Y, Wang Y, Du H, Sawant A, Su Z, Yamamoto J. Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med Phys. 2010;37:2738–48.

    Article  Google Scholar 

  88. Du H, Antonuk LE, El-Mohri Y, Zhao Q, Su Z, Yamamoto J, Wang Y. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys Med Biol. 2010;53:1325–51.

    Article  Google Scholar 

  89. Zentai G, Partain LD, Pavlyuchkova R, Proano C, Virshup GF, Melekhov L, et al. Mercuric iodide and lead iodide X-ray detectors for radiographic and fluoroscopic medical imaging. SPIE Proc. 2003;5030:77. https://doi.org/10.1117/12.480227.

    Article  ADS  Google Scholar 

  90. Street RA, Ready SE, van Schuylenbergh K, Ho J, Boyec JB, Nylen P, Shah K, Melekhov L. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys. 2002;91:3345–55.

    Article  ADS  Google Scholar 

  91. Park JC, Jeon PJ, Kim JS, Im S. Small-dose-sensitive X-ray image pixel with HgI2 photoconductor and amorphous oxide thin-film transistor. Adv Healthc Mater. 2015;4:51–7.

    Article  Google Scholar 

  92. Lee S, Kim JS, Ko KR, Lee GH, Lee DJ, Kim DW, et al. Direct thermal growth of large scale Cl-doped CdTe film for low voltage high resolution X-ray image sensor. Sci Rep. 2018;8:4810.

    ADS  Google Scholar 

  93. Tokuda S, Kishihara H, Adachi S, Sato T. Improvement of temporal response and output uniformity of polycrystalline CdZnTe films for high-sensitivity X-ray imaging. Proc SPIE. 2003;5030:861–70. https://doi.org/10.1117/12.479938.

    Article  ADS  Google Scholar 

  94. Tokuda S, Kishihara H, Adachi S, T. Sato: preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J Mater Sci Mater Electron. 2004;15:1–8.

    Article  Google Scholar 

  95. Simon M, Ford RA, Franklin AR, Grabowski SP, Mensor B, Much G, et al. Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans Nucl Sci. 2005;52:2035–40.

    Article  ADS  Google Scholar 

  96. Semeniuk O, Grynko O, Decrescenzo G, Juska G, Wang K, Reznik A. Characterization of polycrystalline lead oxide for application in direct conversion X-ray detectors. Sci Rep. 2017;7:8659.

    Article  ADS  Google Scholar 

  97. Reznik A, Semeniuk O. Ch. 7: Lead oxide as material of choice for direct conversion detectors. In: Ray A, editor. Oxide electronics. Chichester: Wiley; 2021.

    Google Scholar 

  98. Grynko O, Reznik A. Ch. 17: Progress in Lead oxide X-ray photoconductive layers. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley; 2022.

    Google Scholar 

  99. Gill HS, Elshahat B, Kokila A, Li L, Mosurkald R, Zygmanskie P, Sajob E, Kumar J. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med. 2018;5:20–3.

    Article  Google Scholar 

  100. Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt GJ, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics. 2015;9:444–9.

    Article  ADS  Google Scholar 

  101. Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H, Wang C, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics. 2016;10:333–9.

    Article  ADS  Google Scholar 

  102. Kim Y, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 2017;550:88–92.

    Article  ADS  Google Scholar 

  103. Lin Q. Metal halide perovskites for photodetection. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Wiley; 2022. p. 781–806.

    Chapter  Google Scholar 

  104. Shrestha S, Fischer R, Matt G, Feldner P, Michel T, Osvet A, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics. 2017;11:436–40.

    Article  ADS  Google Scholar 

  105. Li Y, Adeagbo E, Koughia C, Simonson B, Pettipas RD, Mishchenko A, et al. Direct conversion X-ray detectors with 70 pA cm−2 dark currents coated from an alcohol-based perovskite ink. J Mater Chem C. 2022;10:1228–35.

    Article  Google Scholar 

  106. Rowlands JA. Material change for X-ray detectors. Nature. 2017;550:47–8.

    Article  ADS  Google Scholar 

  107. Deumel S, Breemen A, Gelinck G, Peeters B, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron. 2021;4:681–8.

    Article  Google Scholar 

  108. Wang H, Kim DH. Perovskite-based photodetectors: materials and devices. Chem Soc Rev. 2017;46:5204–36.

    Article  Google Scholar 

  109. Greuter F, Blatter G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond Sci Technol. 1990;5:111.

    Article  ADS  Google Scholar 

  110. Chowdhury MH, Kabir MZ. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping. J Phys D Appl Phys. 2011;44:015102.

    Article  ADS  Google Scholar 

  111. Sellin PJ. Thick film compound semiconductors for X-ray imaging applications. Nucl Instr Methods Phys Res A. 2006;563:1–8.

    Article  ADS  Google Scholar 

  112. Kasap SO. X-ray sensitivity of photoconductors: application to stabilized a-Se. J Phys D Appl Phys. 2000;33:2853–65.

    Article  ADS  Google Scholar 

  113. Que W, Rowlands JA. X-ray imaging using amorphous selenium: inherent spatial resolution. Med Phys. 1995;22:365–74.

    Article  Google Scholar 

  114. Panneerselvam D, Kabir MZ. Evaluation of organic perovskite photoconductors for direct conversion X-ray imaging detectors. J Mater Sci Mater Electron. 2017;28:7083–90.

    Article  Google Scholar 

  115. Kabir MZ, Kasap SO, Zhao W, J.A. Rowlands: direct conversion X-ray sensors: sensitivity, DQE & MTF. IEE Proc. (CDS: Special Issue on Amorphous and Microcrystalline Semiconductors). 2003;150:258–66.

    Google Scholar 

  116. Kabir MZ, Rahman MW, Shen WY. Modelling of DQE of direct conversion X-ray imaging detectors incorporating charge carrier trapping and K-fluorescence. IET Circuits Devices Syst. 2011;5:222–31.

    Article  Google Scholar 

  117. Hunt DC, Tousignant O, Demers Y, Laperriere L, Rowlands JA. Imaging performance of amorphous selenium flat-panel detector for digital fluoroscopy. Proc SPIE. 2003;5030:226–34. https://doi.org/10.1117/12.480131.

    Article  ADS  Google Scholar 

  118. Pang G, Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: geometric and effective fill factors. Med Phys. 1998;25:1636–46.

    Article  Google Scholar 

  119. Kabir MZ, Kasap SO. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping. J Phys D Appl Phys. 2003;36:2352–8.

    Article  ADS  Google Scholar 

  120. Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys. 1997;24:1819–33.

    Article  Google Scholar 

  121. Kabir MZ. Effects of blocking layers on image resolution in multilayer photoconductive imaging detectors: application to amorphous selenium X-ray detectors. Radiation 2022;2:91–99.

    Article  Google Scholar 

  122. Rabbani M, Shaw R, Van Metter R. Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms. J Opt Soc Am A. 1987;4:895–901.

    Article  ADS  Google Scholar 

  123. Cunningham I. Ch. 2: Applied linear systems theory. In: Beutel J, Kundel HL, Van Metter RL, editors. Handbook of imaging, vol. 1. Bellingham: SPIE Press; 2000.

    Google Scholar 

  124. Kabir MZ, Kasap SO. DQE of photoconductive X-ray image detectors: application to a-se. J Phys D Appl Phys. 2002;35:2735–43.

    Article  ADS  Google Scholar 

  125. Cunningham IA. Linear-systems Modeling of parallel cascaded Stochastic processes: the NPS of radiographic screens with reabsorption of characteristic X radiation. Proc SPIE. 1998;3336:220–30.

    Article  ADS  Google Scholar 

  126. Sengupta A, Zhao C, Konstantinidis A, Kanicki J. Cascaded systems analysis of a-se/a-Si and a-InGaZnO TFT passive and active pixel sensors for Tomosynthesis. Phys Med Biol. 2019;64:025012.

    Article  Google Scholar 

  127. Arnab SM, Kabir MZ. Impact of charge carrier trapping on amorphous selenium direct conversion avalanche X-ray detectors. J Appl Phys. 2017;112:134502.

    Article  ADS  Google Scholar 

  128. Parsafar A, Scott CC, El-Falou A, Levine PM, Karim KS. Direct-conversion CMOS X-ray imager with 5.6 μm × 6.25 μm pixels. IEEE Trans Electron Devices. 2015;36(5):481–3.

    Article  Google Scholar 

  129. Arvanitis CD, Bohndiek SE, Royle G, Blue A, Liang HX, Clark A, et al. Empirical electro-optical and X-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution X-ray medical imaging. Med Phys. 2007;34(12):4612–25.

    Article  Google Scholar 

  130. Hunt DC, Kenkichi Tanioka JA, Rowlands. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise. Med Phys. 2007;34(3):976–86.

    Article  Google Scholar 

  131. Scheuermann JR, Miranda Y, Liu H, Zhao W. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design. J Appl Phys. 2016;119:024508.

    Article  ADS  Google Scholar 

  132. Arnab SM, Kabir MZ. Impact of Lubberts effect on amorphous selenium indirect conversion avalanche detector for medical X-ray imaging. IEEE Trans Radiat Plasma Med Sci. 2017;1(3):221–8.

    Article  Google Scholar 

  133. Imura S, Mineo K, Honda Y, Arai T, Miyakawa K, Watabe T, Kubota M, Nishimoto K, Sugiyama M, Nanba M. Enhanced image sensing with avalanche multiplication in hybrid structure of crystalline selenium photoconversion layer and CMOSFETs. Sci Rep. 2020;10:21888.

    Article  ADS  Google Scholar 

  134. Arnab SM, Kabir MZ. A novel amorphous selenium direct conversion avalanche detector structure for low dose medical X-ray imaging. IEEE Trans Radiat Plasma Med Sci. 2020;4:319–26.

    Article  Google Scholar 

  135. Matsuura N, Zhao W, Huang Z, Rowlands JA. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. Med Phys. 1999;26:672–81.

    Article  Google Scholar 

  136. Karim K, Nathan A, Rowlands JA. Amorphous silicon active pixel sensor readout circuit for digital imaging. IEEE Trans Electron Devices. 2003;50:200–8.

    Article  ADS  Google Scholar 

  137. Koniczek M, Antonuk LE, El-Mohri Y, Liang AK, Zhao Q. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors. Med Phys. 2017;39:3491–503.

    Article  Google Scholar 

  138. Zha C, Kanicki J. Amorphous in-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis. Med Phys. 2014;41:091902.

    Article  Google Scholar 

  139. Bogaerts J, Bart D, Guy M, Dirk U. Total dose and displacement damage effects in a radiation-hardened CMOS APS. IEEE Trans Electron Devices. 2003;50(1):84–90.

    Article  ADS  Google Scholar 

  140. Loustauneau V, Bissonnettea M, Cadieuxa S, Hansroula M, Massona E, Savarda S, Polischuk B, Lehtimaki M. Proc SPIE. 2003;5030:1011.

    ADS  Google Scholar 

  141. Mahmood SA, Kabir MZ, Tousignant O, Greenspan J. Investigation of ghosting recovery mechanisms in selenium X-ray detector structures for mammography. IEEE Trans Nucl Sci. 2012;59:597.

    Article  ADS  Google Scholar 

  142. Siddiquee S, Kabir MZ. Modeling of photocurrent and lag signals in amorphous selenium X-ray detectors. J Vac Sci Tech A. 2015;33:041514.

    Article  Google Scholar 

  143. Loustauneau V, Bissonnette M, Cadieux S, Hansroul M, Masson E, Savard S, Polischuk B. Ghosting comparison for large-area selenium detectors suitable for mammography and general radiography. Proc SPIE. 2004;5368:162–9. https://doi.org/10.1117/12.535812.

    Article  ADS  Google Scholar 

  144. Manouchehri F, Kabir MZ, Tousignant O, Mani H, Devabhaktuni VK. Time and exposure dependent X-ray sensitivity in multilayer amorphous selenium detectors. J Phys D Appl Phys. 2008;41:235106.

    Article  ADS  Google Scholar 

  145. Kabir MZ, Chowdhury L, DeCrescenzo G, Tousignant O, Kasap SO, Rowlands JA. Effect of repeated X-ray exposure on the resolution of amorphous selenium based X -ray imagers. Med Phys. 2010;37:1339–49.

    Article  Google Scholar 

  146. Kasap SO, Yang J, Simonson B, Adeagbo E, Walornyj M, Belev G, Bradley MP, Johanson RE. Effects of X-ray irradiation on charge transport and charge collection efficiency in stabilized a-Se photoconductors. J Appl Phys. 2020;127:084502.

    Article  ADS  Google Scholar 

  147. Simonson B, Johanson RE, Kasap SO. Effects of high-dose X-ray irradiation on the hole lifetime in vacuum-deposited Stabilized a-Se photoconductive films: implications to the quality control of a-Se used in X-ray detectors. IEEE Trans Nucl Sci. 2020;67:2445.

    Article  ADS  Google Scholar 

  148. Hoq A, Panneerselvam D, Kabir MZ. Sensitivity reduction mechanisms in organic perovskite X-ray detectors. J Mater Sci. 2021;32:16824.

    Google Scholar 

  149. McGregor DS, He Z, Seifert HA, Wehe DK, Rojeski RA. Single charge carrier type sensing with a parallel strip pseudo-Frisch-grid CdZnTe semiconductor radiation detector. Appl Phys Lett. 1998;72(7):792–5.

    Article  ADS  Google Scholar 

  150. Luke PN. Unipolar charge sensing with coplanar electrodes – application to semiconductor detectors. IEEE Trans Nucl Sci. 1995;NS-42:207–13.

    Article  ADS  Google Scholar 

  151. Barrett HH, Eskin JD, Barber HB. Charge transport in arrays of semiconductor gamma-ray detectors. Phys Rev Lett. 1995;75:156–9.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zahangir Kabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabir, M.Z. (2023). Basic Principles of Solid-State X-Ray Radiation Detector Operation. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_1

Download citation

Publish with us

Policies and ethics