Skip to main content

Abstract

Chemiluminescence (CL) is commonly defined as the emission of light by a molecule as a result of a chemical reaction. CL assay has significant advantages including high sensitivity, no external light source, rapid analysis, easy automation, and convenient operation, which has broad applications in clinical diagnosis, drug analysis, and environmental monitoring. Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most important advances in the rapidly growing world of nanotechnology. QDs are made of semiconductor material with unique tunable optoelectronic properties, as well as physical dimensions, that have attracted multidisciplinary research efforts to advance their potential bioanalytical applications and have been the potential alternatives to CL emitters. Of the semiconductor families investigated to date, II–VI materials have shown the most promise, and consequently, their use in biological applications has predominated. Therefore, this chapter will focus on the advances and applications of II–VI semiconductor materials in the biological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng L, Zi-Yue W, C-Y ZHANG. Recent advance in chemiluminescence assay and its biochemical applications. Chin J Anal Chem. 2016;44(12):1934–41.

    Article  Google Scholar 

  2. Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. TrAC Trends Anal Chem. 2010;29(10):1113–26.

    Article  Google Scholar 

  3. Yari A, Karami M. Peroxyoxalate chemiluminescence of 1, 4-dihydroxy-3-methyl-thioxanthone and quenching effect of β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2012;73(1):287–93.

    Article  Google Scholar 

  4. Yang L, Guan G, Wang S, Zhang Z. Nano-anatase-enhanced peroxyoxalate chemiluminescence and its sensing application. J Phys Chem C. 2012;116(5):3356–62.

    Article  Google Scholar 

  5. Zhao S, Liu J, Huang Y, Liu Y-M. Introducing chemiluminescence resonance energy transfer into immunoassay in a microfluidic format for an improved assay sensitivity. Chem Commun. 2012;48(5):699–701.

    Article  Google Scholar 

  6. Bi S, Zhao T, Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem Commun. 2012;48(1):106–8.

    Article  Google Scholar 

  7. Zhang L, Zhang Z, Lu C, Lin J-M. Improved chemiluminescence in Fenton-like reaction via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J Phys Chem C. 2012;116(27):14711–6.

    Article  Google Scholar 

  8. Zhou W, Cao Y, Sui D, Lu C. Radical pair-driven luminescence of quantum dots for specific detection of peroxynitrite in living cells. Anal Chem. 2016;88(5):2659–65.

    Article  Google Scholar 

  9. Zhou W, Cao Y, Sui D, Lu C. Turn-on luminescent probes for the real-time monitoring of endogenous hydroxyl radicals in living cells. Angew Chem. 2016;128(13):4308–13.

    Article  ADS  Google Scholar 

  10. Song H, Su Y, Zhang L, Lv Y. Quantum dots-based chemiluminescence probes: an overview. Luminescence. 2019;34(6):530–43.

    Article  Google Scholar 

  11. Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. Rev Talanta. 2000;51(3):415–39.

    Article  Google Scholar 

  12. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–15.

    Article  Google Scholar 

  13. Hines MA, Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B. 1998;102(19):3655–7.

    Article  Google Scholar 

  14. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 1996;100(2):468–71.

    Article  Google Scholar 

  15. Tsay JM, Michalet X. New light on quantum dot cytotoxicity. Chem Biol. 2005;12(11):1159–61.

    Article  Google Scholar 

  16. Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E. 2004;25(1):1–12.

    Article  ADS  Google Scholar 

  17. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.

    Article  ADS  Google Scholar 

  18. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21(1):41–6.

    Article  Google Scholar 

  19. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.

    Article  ADS  Google Scholar 

  20. Santra S, Wang K, Tapec R, Tan W. Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt. 2001;6(2):160–6.

    Article  Google Scholar 

  21. Raab RM, Stephanopoulos G. Dynamics of gene silencing by RNA interference. Biotechnol Bioeng. 2004;88(1):121–32.

    Article  Google Scholar 

  22. Mei BC, Susumu K, Medintz IL, Mattoussi H. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc. 2009;4(3):412–23.

    Article  Google Scholar 

  23. Stewart MH, Susumu K, Mei BC, Medintz IL, Delehanty JB, Blanco-Canosa JB, et al. Multidentate poly (ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc. 2010;132(28):9804–13.

    Article  Google Scholar 

  24. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34.

    Article  Google Scholar 

  25. Liu J, Li H, Wang W, Xu H, Yang X, Liang J, et al. Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small. 2006;2(8–9):999–1002.

    Article  Google Scholar 

  26. Susumu K, Mei BC, Mattoussi H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc. 2009;4(3):424–36.

    Article  Google Scholar 

  27. Tan SJ, Jana NR, Gao S, Patra PK, Ying JY. Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem Mater. 2010;22(7):2239–47.

    Article  Google Scholar 

  28. Kim S-W, Kim S, Tracy JB, Jasanoff A, Bawendi MG. Phosphine oxide polymer for water-soluble nanoparticles. J Am Chem Soc. 2005;127(13):4556–7.

    Article  Google Scholar 

  29. Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir. 2006;22(5):2304–10.

    Article  Google Scholar 

  30. Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007;129(10):2871–9.

    Article  Google Scholar 

  31. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 2004;4(4):703–7.

    Article  ADS  Google Scholar 

  32. Wu Y, Chakrabortty S, Gropeanu RA, Wilhelmi J, Xu Y, Er KS, et al. pH-responsive quantum dots via an albumin polymer surface coating. J Am Chem Soc. 2010;132(14):5012–4.

    Article  Google Scholar 

  33. Rakshit S, Vasudevan S. Resonance energy transfer from β-cyclodextrin-capped ZnO: MgO nanocrystals to included Nile red guest molecules in aqueous media. ACS Nano. 2008;2(7):1473–9.

    Article  Google Scholar 

  34. Freeman R, Finder T, Bahshi L, Willner I. β-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett. 2009;9(5):2073–6.

    Article  ADS  Google Scholar 

  35. Jin T, Fujii F, Sakata H, Tamura M, Kinjo M. Amphiphilic p-sulfonatocalix (4) arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine. Chem Commun. 2005;34:4300–2.

    Article  Google Scholar 

  36. Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M. Control of the optical properties of quantum dots by surface coating with calix (n) arene carboxylic acids. J Am Chem Soc. 2006;128(29):9288–9.

    Article  Google Scholar 

  37. Koole R, Van Schooneveld MM, Hilhorst J, de Mello DC, ʼt Hart DC, Van Blaaderen A, et al. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem Mater. 2008;20(7):2503–12.

    Article  Google Scholar 

  38. Han R, Yu M, Zheng Q, Wang L, Hong Y, Sha Y. A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir. 2009;25(20):12250–5.

    Article  Google Scholar 

  39. Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem. 2002;74(4):841–7.

    Article  Google Scholar 

  40. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc. 2002;124(22):6378–82.

    Article  Google Scholar 

  41. Wang YA, Li JJ, Chen H, Peng X. Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc. 2002;124(10):2293–8.

    Article  Google Scholar 

  42. Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark. 2008;4(6):307–19.

    Article  Google Scholar 

  43. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.

    Article  Google Scholar 

  44. Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe− ZnS quantum dots. J Am Chem Soc. 2003;125(46):13918–9.

    Article  Google Scholar 

  45. Mahtab R, Harden HH, Murphy CJ. Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”− DNA interactions. J Am Chem Soc. 2000;122(1):14–7.

    Article  Google Scholar 

  46. Motevalian M, Ghavamipour F, Maroufi B, Mirshahi M, Sajedi RH. Mutual effects of protein corona formation on CdTe quantum dots. Anal Biochem. 2020;610:113983.

    Article  Google Scholar 

  47. Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun. 2003;302(3):496–501.

    Article  Google Scholar 

  48. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    Article  ADS  Google Scholar 

  49. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2(5):1152–65.

    Article  Google Scholar 

  50. Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 2004;32(3):e28.

    Article  Google Scholar 

  51. Pinaud F, King D, Moore H-P, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc. 2004;126(19):6115–23.

    Article  Google Scholar 

  52. Gao X, Chan WCW, Nie S. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt. 2002;7(4):532–7.

    Article  Google Scholar 

  53. Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 2006;6(4):800–8.

    Article  ADS  Google Scholar 

  54. Bottini M, D’Annibale F, Magrini A, Cerignoli F, Arimura Y, Dawson MI, et al. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine. 2007;2(2):227.

    Google Scholar 

  55. Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC, Prior JAV, et al. Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta. 2012;735:9–22.

    Article  Google Scholar 

  56. Chen H, Lin L, Li H, Lin J-M. Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev. 2014;263:86–100.

    Article  Google Scholar 

  57. Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta. 2018;180:1–11.

    Article  Google Scholar 

  58. Wang Z, Li J, Liu B, Hu J, Yao X, Li J. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B. 2005;109(49):23304–11.

    Article  Google Scholar 

  59. Wang Z, Li J, Liu B, Li J. CdTe nanocrystals sensitized chemiluminescence and the analytical application. Talanta. 2009;77(3):1050–6.

    Article  Google Scholar 

  60. Guo C, Zeng H, Ding X, He D, Li J, Yang R, et al. Enhanced chemiluminescence of the luminol-K3Fe (CN)6 system by ZnSe quantum dots and its application. J Lumin. 2013;134:888–92.

    Article  Google Scholar 

  61. Zhao Y, Zhao S, Huang J, Ye F. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta. 2011;85(5):2650–4.

    Article  Google Scholar 

  62. Kanwal S, Fu X, Su X. Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium (III) detection. Microchim Acta. 2010;169(1–2):167–72.

    Article  Google Scholar 

  63. Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed. 2006;45(31):5140–3.

    Article  Google Scholar 

  64. Li Z, Wang Y, Zhang G, Xu W, Han Y. Chemiluminescence resonance energy transfer in the luminol–CdTe quantum dots conjugates. J Lumin. 2010;130(6):995–9.

    Article  Google Scholar 

  65. Wang H-Q, Li Y-Q, Wang J-H, Xu Q, Li X-Q, Zhao Y-D. Influence of quantum dot’s quantum yield to chemiluminescent resonance energy transfer. Anal Chim Acta. 2008;610(1):68–73.

    Article  Google Scholar 

  66. Gámiz-Gracia L, García-Campaña AM, Huertas-Pérez JF, Lara FJ. Chemiluminescence detection in liquid chromatography: applications to clinical, pharmaceutical, environmental and food analysis—a review. Anal Chim Acta. 2009;640(1–2):7–28.

    Article  Google Scholar 

  67. Coulet PR, Blum LJ. Bioluminescence/chemiluminescence based sensors. TrAC Trends Anal Chem. 1992;11(2):57–61.

    Article  Google Scholar 

  68. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435.

    Article  ADS  Google Scholar 

  69. Baeyens WRG, Schulman SG, Calokerinos AC, Zhao Y, Campana AMG, Nakashima K, et al. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. J Pharm Biomed Anal. 1998;17(6–7):941–53.

    Article  Google Scholar 

  70. Lei J, Ju H. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30(8):1351–9.

    Article  Google Scholar 

  71. Baeyens W, Bruggeman J, Lin B. Enhanced chemiluminescence detection of some dansyl amino acids in liquid chromatography. Chromatographia. 1989;27(5–6):191–3.

    Article  Google Scholar 

  72. Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125(23):7100–6.

    Article  Google Scholar 

  73. Kim S, Fisher B, Eisler H-J, Bawendi M. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc. 2003;125(38):11466–7.

    Article  Google Scholar 

  74. Zhong X, Han M, Dong Z, White TJ, Knoll W. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J Am Chem Soc. 2003;125(28):8589–94.

    Google Scholar 

  75. Ghavamipour F, Sajedi RH, Khajeh K. A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots. Microchim Acta. 2018;185(8):376.

    Article  Google Scholar 

  76. Orooji Y, Irani-Nezhad MH, Hassandoost R, Khataee A, Pouran SR, Joo SW. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim Acta A Mol Biomol Spectrosc. 2020;234:118272.

    Article  Google Scholar 

  77. Qi Y, He J, Xiu F-R, Yu X, Gao X, Li Y, et al. A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem J. 2019;147:789–96.

    Article  Google Scholar 

  78. Li F, Guo L, Hu Y, Li Z, Liu J, He J, et al. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta. 2020;207:120346.

    Article  Google Scholar 

  79. Hosseini M, Ganjali MR, Vaezi Z, Arabsorkhi B, Dadmehr M, Faridbod F, et al. Selective recognition histidine and tryptophan by enhanced chemiluminescence ZnSe quantum dots. Sensors Actuators B Chem. 2015;210:349–54.

    Article  Google Scholar 

  80. Khataee A, Hasanzadeh A, Iranifam M, Joo SW. A novel flow-injection chemiluminescence method for determination of baclofen using l-cysteine capped CdS quantum dots. Sensors Actuators B Chem. 2015;215:272–82.

    Article  Google Scholar 

  81. Su Y, Deng D, Zhang L, Song H, Lv Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay. TrAC Trends Anal Chem. 2016;82:394–411.

    Article  Google Scholar 

  82. Ge S, Zhang C, Yu F, Yan M, Yu J. Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sensors Actuators B Chem. 2011;156(1):222–7.

    Article  Google Scholar 

  83. Duan H, Li L, Wang X, Wang Y, Li J, Luo C. CdTe quantum dots- luminol for trace-level chemiluminescence sensing of phenacetin based on biological recognition materials. New J Chem. 2016;40(1):458–63.

    Article  Google Scholar 

  84. Liu J, Chen H, Lin Z, Lin J-M. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem. 2010;82(17):7380–6.

    Article  Google Scholar 

  85. Chen H, Li R, Lin L, Guo G, Lin J-M. Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide–sodium hydrogen carbonate–CdSe/CdS quantum dots system. Talanta. 2010;81(4–5):1688–96.

    Article  Google Scholar 

  86. Zhou M, Wang A, Li C, Luo X, Ma Y. Flow-based determination of methionine in pharmaceutical formulations exploiting TGA-capped CdTe quantum dots for enhancing the luminol-KIO4 chemiluminescence. J Lumin. 2017;183:206–11.

    Article  Google Scholar 

  87. Azizi SN, Shakeri P, Chaichi MJ, Bekhradnia A, Taghavi M, Ghaemy M. The use of imidazolium ionic liquid/copper complex as novel and green catalyst for chemiluminescent detection of folic acid by Mn-doped ZnS nanocrystals. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:482–8.

    Article  ADS  Google Scholar 

  88. Khataee A, Hasanzadeh A, Lotfi R, Joo SW. Enhanced chemiluminescence of carminic acid-permanganate by CdS quantum dots and its application for sensitive quenchometric flow injection assays of cloxacillin. Talanta. 2016;152:171–8.

    Article  Google Scholar 

  89. Chowdhury ZZ, Ali AE, Khalid K, Ikram R, Rahman M, Sagadevan S, et al. Science and technology roadmap for photocatalytic membrane separation: a potential route for environmental remediation and fouling mitigation. In: Green photocatalytic semiconductors. Cham: Springer; 2022. p. 513–50.

    Google Scholar 

  90. Hosseini M, Ganjali MR, Jarrahi A, Vaezi Z, Mizani F, Faridbod F. Enhanced chemiluminescence CdSe quantum dots by histidine and tryptophan. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:629–33.

    Article  ADS  Google Scholar 

  91. Hosseini M, Ganjali MR, Vaezi Z, Faridbod F, Arabsorkhi B, Sheikhha MH. Selective recognition of dysprosium (III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:116–20.

    Article  ADS  Google Scholar 

  92. Dong Y, Wang J, Peng Y, Chu X, Wang S. Chemiluminescence resonance energy transfer between CdS quantum dots and lucigenin and its sensing application. J Lumin. 2017;181:433–8.

    Article  Google Scholar 

  93. Kang J, Li X, Geng J, Han L, Tang J, Jin Y, et al. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe (CN)6 system. Food Chem. 2012;134(4):2383–8.

    Article  Google Scholar 

  94. Sun C, Liu B, Li J. Sensitized chemiluminescence of CdTe quantum-dots on Ce (IV)-sulfite and its analytical applications. Talanta. 2008;75(2):447–54.

    Article  Google Scholar 

  95. Fortes PR, Frigerio C, Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG. Cadmium telluride nanocrystals as luminescent sensitizers in flow analysis. Talanta. 2011;84(5):1314–7.

    Article  Google Scholar 

  96. Zhao S, Huang Y, Shi M, Liu R, Liu Y-M. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem. 2010;82(5):2036–41.

    Article  Google Scholar 

  97. Niazov A, Freeman R, Girsh J, Willner I. Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzyme conjugates. Sensors. 2011;11(11):10388–97.

    Article  ADS  Google Scholar 

  98. Ghavamipour F, Rahmani H, Shanehsaz M, Khajeh K, Mirshahi M, Sajedi R. Enhanced sensitivity of VEGF detection using catalase-mediated chemiluminescence immunoassay based on CdTe QD/H2O2 system. J Nanobiotechnol. 2020;18:1–10.

    Article  Google Scholar 

  99. Freeman R, Girsh J, Fang-ju Jou A, Ho JA, Hug T, Dernedde J, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem. 2012;84(14):6192–8.

    Article  Google Scholar 

  100. Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc. 2011;133(30):11597–604.

    Article  Google Scholar 

  101. Zhou Z-M, Yu Y, Zhao Y-D. A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst. 2012;137(18):4262–6.

    Article  ADS  Google Scholar 

  102. Li X, Li J, Tang J, Kang J, Zhang Y. Study of influence of metal ions on CdTe/H2O2 chemiluminescence. J Lumin. 2008;128(7):1229–34.

    Article  Google Scholar 

  103. Sheng Z, Han H, Liang J. The behaviors of metal ions in the CdTe quantum dots–H2O2 chemiluminescence reaction and its sensing application. Lumin J Biol Chem Lumin. 2009;24(5):271–5.

    Article  Google Scholar 

  104. Kanwal S, Traore Z, Zhao C, Su X. Enhancement effect of CdTe quantum dots–IgG bioconjugates on chemiluminescence of luminol–H2O2 system. J Lumin. 2010;130(10):1901–6.

    Article  Google Scholar 

  105. Zhang J, Li B. Enhanced chemiluminescence of CdTe quantum dots–H2O2 by horseradish peroxidase-mimicking DNAzyme. Spectrochim Acta A Mol Biomol Spectrosc. 2014;125:228–33.

    Article  ADS  Google Scholar 

  106. Ghavamipour F, Khajeh K, Sajedi RH. The application of the QDs/H2O2 chemiluminescence system in HRP assay and HRP-based immunoassay. Colloids Surf B Biointerfaces. 2021;206:111942.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza H. Sajedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavamipour, F., Sajedi, R. (2023). QDs-Based Chemiluminescence Biosensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_19

Download citation

Publish with us

Policies and ethics