Skip to main content

Nanomaterial-Based Electric and Electronic Gas Sensors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

Great attention has been dedicated to the development and use of solid-state gas sensors based on nanostructured semiconductors in recent decades. Metal oxide semiconductors (MOSs) are definitely the most investigated materials, but they have shown several shortcomings, including the lack of selectivity and stability over time, which have limited their use in many applications. This has led researchers to design and synthesise advanced nanostructured materials based on other types of semiconductors, able to overcome the limitations of MOSs towards the development of devices with optimised sensing performance. Among several alternatives, nanostructured II–VI transition metal chalcogenides (TMCs) are promising candidates for gas sensor development, due to their very interesting physicochemical features. These include: (i) wide and tunable bandgap; (ii) size-tunable radiation absorption and emission; (iii) catalytic and photocatalytic properties and (iv) the possibility to tune the nanostructure morphology and crystal structure by using simple and inexpensive methods. Although scarcely investigated in the gas sensing field so far, preliminary studies published over the last 10 years have shown peculiar sensing properties of TMCs, which could open up a future integration of these materials into commercial gas monitoring devices.

This chapter presents a critical analysis of the state of the art related to the synthesis and use of II–VI TMC nanomaterials (NMs) for the development of electrical and electronic gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan Z, Li R, Meng F, Zhang J, Zuo K, Han E. Approaches to enhancing gas sensing properties: a review. Sensors (Basel). 2019;19(7):1495.

    Article  ADS  Google Scholar 

  2. Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, Vanzetti L, Malagù C, Zonta G. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors (Basel). 2016;16(3):296.

    Article  ADS  Google Scholar 

  3. Fabbri B, Bonoldi L, Guidi V, Cruciani G, Casotti D, Malagù C, et al. Crystalline microporous organosilicates with reversed functionalities of organic and inorganic components for room-temperature gas sensing. ACS Appl Mater Interfaces. 2017;9(29):24812–20.

    Article  Google Scholar 

  4. Liu L, Li X, Dutta PK, Wang J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens Actuators B Chem. 2013;185:1–9.

    Article  Google Scholar 

  5. Zhang C, Boudiba A, De Marco P, Snyders R, Olivier M-G, Debliquy M. Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sens Actuators B Chem. 2013;181:395–401.

    Article  Google Scholar 

  6. Ossai CI, Raghavan N. Nanostructure and nanomaterial characterization, growth mechanisms, and applications. Nanotechnol Rev. 2018;7(2):209–31.

    Article  Google Scholar 

  7. Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured gas sensors: from air quality and environmental monitoring to healthcare and medical applications. Nano. 2021;11(8):1927.

    Google Scholar 

  8. Zhou X, Xue Z, Chen X, Huang C, Bai W, Lu Z, Wang T. Nanomaterial-based gas sensors used for breath diagnosis. J Mater Chem B. 2020;8(16):3231–48.

    Article  Google Scholar 

  9. Recommendation on the definition of a nanomaterial (2011/696/EU). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696

  10. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48(1):1–29.

    Article  ADS  Google Scholar 

  11. Pokropivny VV, Skorokhod VV. New dimensionality classifications of nanostructures. Physica E Low Dimens Syst Nanostruct. 2008;40(7):2521–5.

    Article  ADS  Google Scholar 

  12. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. Interface Sci Technol. 2019;28:1–27.

    Article  Google Scholar 

  13. Zhou T, Zhang T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors. Small Methods. 2021;5(9):2100515.

    Article  Google Scholar 

  14. Della Ciana M, Valt M, Fabbri B, Bernardoni P, Guidi V, Morandi V. Development of a dedicated instrumentation for electrical and thermal characterization of chemiresistive gas sensors. Rev Sci Instrum. 2021;92(7):074702.

    Article  ADS  Google Scholar 

  15. Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev. 2019;119(1):478–598.

    Article  Google Scholar 

  16. Korotcenkov G. Handbook of gas sensor materials. New York: Springer; 2013. p. 167–95.

    Book  Google Scholar 

  17. Malagú C, Giberti A, Morandi S, Aldao CM. Electrical and spectroscopic analysis in nanostructured SnO2: “long-term” resistance drift is due to in-diffusion. Int J Appl Phys. 2011;110(9):093711.

    Article  ADS  Google Scholar 

  18. Nesheva D. Nanosized and nanostructured II-VI semiconductors: chemical sensor applications. In: Vaseashta A, Braman E, Susmann P, editors. Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism, NATO science for peace and security series a: chemistry and biology. Dordrecht: Springer; 2012. p. 159–64.

    Chapter  Google Scholar 

  19. Neri G. First fifty years of chemoresistive gas sensors. Chemosensors. 2015;3(1):1–20.

    Article  Google Scholar 

  20. Valt M, Fabbri B, Gaiardo A, Gherardi S, Casotti D, Cruciani G, et al. Aza-crown-ether functionalized graphene oxide for gas sensing and cation trapping applications. Mater Res Express. 2019;6(7):075603.

    Article  ADS  Google Scholar 

  21. Valt M, Caporali M, Fabbri B, Gaiardo A, Krik S, Iacob E, et al. Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities. ACS Appl Mater Interfaces. 2021;13(37):44711–22.

    Article  Google Scholar 

  22. Gaiardo A, Fabbri B, Giberti A, Valt M, Gherardi S, Guidi V, et al. Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. Sens Actuators B Chem. 2020;305:127485.

    Article  Google Scholar 

  23. Zhang L, Dong R, Zhu Z, Wang S. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens Actuators B Chem. 2017;245:112–21.

    Article  Google Scholar 

  24. Shakil MA, Das S, Rahman MA, Akther US, Majumdar MKH, Rahman MK. A review on zinc sulphide thin film fabrication for various applications based on doping elements. Mater Sci Appl. 2018;9(9):751–78.

    Google Scholar 

  25. Chizhov A, Rumyantseva M, Gaskov A. Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nano. 2021;11(4):892.

    Google Scholar 

  26. Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.

    Article  ADS  Google Scholar 

  27. Zhang Q, Li H, Ma Y, Zhai T. ZnSe nanostructures: synthesis, properties and applications. Prog Mater Sci. 2016;83:472–535.

    Article  Google Scholar 

  28. Galstyan V. “Quantum dots: perspectives in next-generation chemical gas sensors” – a review. Anal Chim Acta. 2021;1152:238192.

    Article  Google Scholar 

  29. Mishra RK, Choi G-J, Choi H-J, Gwag J-S. ZnS quantum dot based acetone sensor for monitoring health-hazardous gases in indoor/outdoor environment. Micromachines. 2021;12(6):598.

    Article  Google Scholar 

  30. Chizhov A, Vasiliev R, Rumyantseva M, Krylov I, Drozdov K, Batuk M, et al. Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD. Front Mater. 2019;6:231.

    Article  ADS  Google Scholar 

  31. Dun M, Tan J, Tan W, Tang M, Huang X. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery. Sens Actuators B Chem. 2019;298:126839.

    Article  Google Scholar 

  32. Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.

    Article  ADS  Google Scholar 

  33. Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B Chem. 2015;207:504–10.

    Article  Google Scholar 

  34. Li L-S, Hu J, Yang W, Alivisatos AP. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001;1(7):349–51.

    Article  ADS  Google Scholar 

  35. Li J, Wang L-W. Comparison between quantum confinement effects of quantum wires and dots. Chem Mater. 2004;16(21):4012–5.

    Article  Google Scholar 

  36. Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nano. 2020;10(7):1392.

    Google Scholar 

  37. Zhu L, Feng C, Li F, Zhang D, Li C, Wang Y, et al. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv. 2014;4(106):61691–7.

    Article  ADS  Google Scholar 

  38. Jiang P, Jie J, Yu Y, Wang Z, Xie C, Zhang X, et al. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. J Mater Chem. 2012;22(14):6856–61.

    Article  Google Scholar 

  39. Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires. Sens Actuators B Chem. 2013;188:1270–6.

    Article  Google Scholar 

  40. Park S, Kim S, Lee WI, Kim K-K, Lee C. Room temperature, ppb-level NO2 gas sensing of multiplenetworked ZnSe nanowire sensors under UV illumination. Beilstein J Nanotechnol. 2014;5(1):1836–41.

    Article  Google Scholar 

  41. Ma X, Guo S, Shen J, Chen Y, Chen C, Sun L, et al. Synthesis and enhanced gas sensing properties of Au-nanoparticle decorated CdS nanowires. RSC Adv. 2016;6(75):70907–12.

    Article  ADS  Google Scholar 

  42. Lin Z, Liao F, Zhu L, Lu S, Sheng M, Gao S, et al. Visible light enhanced gas sensing of CdSe nanoribbons of ethanol. CrystEngComm. 2014;16(20):4231–5.

    Article  Google Scholar 

  43. Zhang W, Wang S, Wang Y, Zhu Z, Gao X, Yang J, et al. ZnO@ZnS core/shell microrods with enhanced gas sensing properties. RSC Adv. 2015;5(4):2620–9.

    Article  ADS  Google Scholar 

  44. Kim K-K, Kim D, Kang S-H, Park S. Detection of ethanol gas using In2O3 nanoparticle-decorated ZnS nanowires. Sens Actuators B Chem. 2017;248:43–9.

    Article  Google Scholar 

  45. Gaponenko SV, Hilmi VD. Applied nanophotonics. Cambridge: Cambridge University Press; 2018.

    Book  Google Scholar 

  46. Ghimpu L, Lupan O, Postica V, Strobel J, Kienle L, Terasa M-I, et al. Individual CdS-covered aerographite microtubes for room temperature VOC sensing with high selectivity. Mater Sci Semicond Process. 2019;100:275–82.

    Article  Google Scholar 

  47. Li H-Y, Yoon J-W, Lee C-S, Lim K, Yoon J-W, Lee J-H. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963–70.

    Article  Google Scholar 

  48. Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro-/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.

    Article  Google Scholar 

  49. Wang G, Qin J, Zhou X, Deng Y, Wang H, Zhao Y, et al. Self-template synthesis of mesoporous metal oxide spheres with metal-mediated inner architectures and superior sensing performance. Adv Funct Mater. 2018;28(51):1806144.

    Article  Google Scholar 

  50. Tao Z, Li Y, Zhang B, Sun G, Xiao M, Bala H, et al. Synthesis of urchin-like In2O3 hollow spheres for selective and quantitative detection of formaldehyde. Sens Actuators B Chem. 2019;298:126889.

    Article  Google Scholar 

  51. Zhao H, Lei Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv Energy Mater. 2020;10(28):2001460.

    Article  Google Scholar 

  52. Wulff G, Liu J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res. 2012;45(2):239–47.

    Article  Google Scholar 

  53. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. Advances in biomimetic and nanostructured biohybrid materials. Adv Mater. 2010;22(3):323–36.

    Article  Google Scholar 

  54. Yuan J-J, Jin R-H. Temporally and spatially controlled silicification for self-generating polymer@silica hybrid nanotube on substrates with tunable film nanostructure. J Mater Chem. 2012;22(11):5080–8.

    Article  Google Scholar 

  55. Rao W, Wang D, Kups T, Baradács E, Parditka B, Erdélyi Z, et al. Nanoporous gold nanoparticles and Au/Al2O3 hybrid nanoparticles with large tunability of plasmonic properties. ACS Appl Mater Interfaces. 2017;9(7):6273–81.

    Article  Google Scholar 

  56. Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, Du X-W. Arrays of ultrathin CdS nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2017;9(1):602–9.

    Article  Google Scholar 

  57. Yeole B, Sen T, Hansora D, Mishra S. Polypyrrole/metal sulphide hybrid nanocomposites: synthesis, characterization and room temperature gas sensing properties. Mater Res. 2016;19(5):999–1007.

    Article  Google Scholar 

  58. Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. Nanosci Nanotechnol. 2016;16(3):3026–9.

    Google Scholar 

  59. Hoa ND, Duy NV, Hieu NV. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications. Mater Res Bull. 2013;48(2):440–8.

    Article  Google Scholar 

  60. Wang X, Qiu S, Liu J, He C, Lu G, Liu W. Synthesis of mesoporous SnO2 spheres and application in gas sensors. Eur J Inorg Chem. 2014;5:863–9.

    Article  Google Scholar 

  61. Teoh LG, Hung IM, Shieh J, Lai WH, Hon MH. High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film. Electrochem Solid-State Lett. 2003;6(8):G108–11.

    Article  Google Scholar 

  62. Hoa ND, Duy NV, El-Safty SA, Hieu NV. Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J Nanomater. 2015;2015:972025.

    Article  Google Scholar 

  63. Nandhakumar I, Gabriel T, Li X, Attard G, Markham M, Smith D, et al. Optical properties of mesoporous II-VI semiconductor compound films. Chem Commun (Camb). 2004;4(12):1374–5.

    Article  Google Scholar 

  64. Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.

    Article  Google Scholar 

  65. Zhang Q, Ma S, Zhang R, Zhu K, Tie Y, Pei S. Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J Alloys Compd. 2019;807:151650.

    Article  Google Scholar 

  66. Jaiswal J, Singh P, Chandra R. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sens Actuators B Chem. 2021;327:128862.

    Article  Google Scholar 

  67. Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.

    Article  Google Scholar 

  68. Bai H, Guo H, Tan Y, Wang J, Dong Y, Liu B, et al. Facile synthesis of mesoporous CdS/PbS/SnO2 composites for high-selectivity H2 gas sensor. Sens Actuators B Chem. 2021;340:129924.

    Article  Google Scholar 

  69. Xue S, Cao S, Huang Z, Yang D, Zhang G. Improving gas-sensing performance based on MOS nanomaterials: a review. Materials. 2021;14(15):4263.

    Article  ADS  Google Scholar 

  70. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–433.

    Article  Google Scholar 

  71. Kim J-H, Mirzaei A, Kim HW, Kim SS. Variation of shell thickness in ZnO-SnO2 core-shell nanowires for optimizing sensing behaviors to CO, C6H6, and C7H8 gases. Sens Actuators B Chem. 2020;302:127150.

    Article  Google Scholar 

  72. Li Y, Shan L-X, Lian X-X, Zhou Q-J, An D-M. Enhanced NO2 sensing performance of ZnO@ZnS core-shell structure fabricated using a solution chemical method. Ceram Int. 2021;47(19):27411–9.

    Article  Google Scholar 

  73. Mun Y, Park S, Ko H, Lee C, Lee S. NO2 gas sensing properties of ZnO/ZnS core-shell nanowires. J Korean Phys Soc. 2013;63(8):1595–600.

    Article  Google Scholar 

  74. Yang D, Cho I, Kim D, Lim MA, Li Z, Ok JG, Lee M, Park I. Gas sensor by direct growth and functionalization of metal oxide/metal sulfide core-shell nanowires on flexible substrates. ACS Appl Mater Interfaces. 2019;11(27):24298–307.

    Article  Google Scholar 

  75. Tsai Y-S, Chou T-W, Xu CY, Chang Huang W, Lin CF, Wu YS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.

    Article  Google Scholar 

  76. Li Y, Song S, Zhang L-B, Lian X-X, Shan L-X, Zhou Q-J. Fabrication of hollow porous ZnO@ZnS heterostructures via hydrothermal method and enhanced gas-sensing performance for ethanol. J Alloys Compd. 2021;855:157430.

    Article  Google Scholar 

  77. Liu W, Gu D, Li X. Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors. Sens Actuators B Chem. 2020;320:128365.

    Article  Google Scholar 

  78. Chen Q, Ma SY, Xu XL, Jiao HY, Zhang GH, Liu LW, et al. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sens Actuators B Chem. 2018;264:263–78.

    Article  Google Scholar 

  79. Chueh Y-L, Tang S-Y, Yang C-C, Su T-Y, Yang T-Y, Wu S-C, et al. Design of core−shell quantum dots−3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications. ACS Nano. 2020;14(10):12668–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gaiardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaiardo, A., Fabbri, B., Valt, M. (2023). Nanomaterial-Based Electric and Electronic Gas Sensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_10

Download citation

Publish with us

Policies and ethics