Skip to main content

Pulp Response to Clinical Procedures and Dental Materials

  • Chapter
  • First Online:
Contemporary Endodontics for Children and Adolescents

Abstract

This chapter aims to provide readers with reliable, evidence-based data obtained from laboratory studies and clinical trials performed in the last decades in different fields of dentistry related to dental materials, as well as pulp biology and regeneration. Several relevant pieces of information about the responses of the dentin-pulp complex against clinical procedures and many cytotoxic or bioactive dental products recommended to be applied on enamel, dentin, and exposed pulps were reported and critically discussed. Sequences of clinical applications of specific resin-based dental materials were included in this chapter, and histopathological micrographs of human teeth submitted to variable clinical procedures were also presented to make the relations between dental materials and the dentin-pulp complex clearer to the readers. Overall, the authors consider that within contemporary restorative dentistry, using minimally invasive operative techniques associated with applying dental materials that present scientifically proven properties to be safely employed in specific clinical situations must be routine for clinicians. This professional and responsible attitude will undoubtedly result in a greater chance of achieving clinical success, benefiting patients and dentists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatzimarkou S, Koletsi D, Kavvadia K. The effect of resin infiltration on proximal caries lesions in primary and permanent teeth. A systematic review and meta-analysis of clinical trials. J Dent. 2018;77:8–17. https://doi.org/10.1016/j.jdent.2018.08.004.

    Article  PubMed  Google Scholar 

  2. Soares IPM, Anovazzi G, Anselmi C, Leitte SDLS, Doares DG, de Souza Costa CA, Hebling J. Response of pulp cells to resin infiltration of enamel white spot-like lesions. Dent Mater. 2021;36(6):e329–40. https://doi.org/10.1016/j.dental.2021.01.014.

    Article  Google Scholar 

  3. Paris S, Hopfenmuller W, Meyer-Lueckel H. Resin infiltration of natural caries lesions. J Dent Res. 2007;89:823–6. https://doi.org/10.1177/0022034510369289.

    Article  Google Scholar 

  4. Borges AB, Caneppele TMF, Masterson D, Maia LC. Is resin infiltration an effective esthetic treatment for enamel development defects and white spot lesions? A systematic review. J Dent. 2017;56:11–8. https://doi.org/10.1016/j.jdent.2016.10.010.

    Article  PubMed  Google Scholar 

  5. Paris S, Schwendicke F, Keltsch J, Dörfer C, Meyer-Lueckel H. Masking of white spot lesions by resin infiltration in vitro. J Dent. 2013;41:e28–34. https://doi.org/10.1016/j.jdent.2013.04.003.

    Article  PubMed  Google Scholar 

  6. International Organization for Standartization. ISO 7405:2018, dentistry - evaluation of biocompatibility of medical devices used in dentistry. Geneva: International Organization for Standardization; 2018.

    Google Scholar 

  7. International Organization for Standartization, ISO 10993-5. Biological evaluation of medical devices. Part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization; 2009.

    Google Scholar 

  8. Gonzalez-Bonet A, Kaufman G, Yang Y, Wong C, Jackson A, Huyang G, et al. Preparation of dental resins resistant to enzymatic and hydrolytic degradation in Oral environments. Biomacromolecules. 2015;16:3381–8. https://doi.org/10.1021/acs.biomac.5b01069.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hoefler V, Nagaoka H, Miller CS. Long-term survival and vitality outcomes of permanent teeth following deep caries treatment with step-wise and partial-caries-removal: A systematic review. J Dent. 2016;54:25–32.

    Article  PubMed  Google Scholar 

  10. Barros MMAF, Rodrigues MIQR, Muniz FWMG, Rodrigues LKA. Selective, stepwise, or nonselective removal of carious tissue: which technique offers lower risk for the treatment of dental caries in permanent teeth? A systematic review and meta-analysis. Clin Oral Invest. 2020;24(2):521–32.

    Article  Google Scholar 

  11. Zhao IS, Gao SS, Hiraishi N, Burrow MF, Duangthip D, Mei ML, Lo EC, Chu CH. Mechanisms of silver diamine fluoride on arresting caries: a literature review. Int Dent J. 2018;68(2):67–76.

    Article  PubMed  Google Scholar 

  12. Mei ML, Lo ECM, Chu CH. Arresting dentine caries with silver diamine fluoride: What's behind it? J Dent Res. 2018;97(7):751–8.

    Article  PubMed  Google Scholar 

  13. Greenwall-Cohen J, Greenwall L, Barry S. Silver diamine fluoride—an overview of the literature and current clinical techniques. Br Dent J. 2020;228(11):831–8.

    Article  PubMed  Google Scholar 

  14. Gao SS, Zhao IS, Hiraishi N, Duangthip D, Mei ML, Lo ECM, Chu CH. Clinical trials of silver diamine fluoride in arresting caries among children a systematic review. JDR Clin Trans Res. 2016;1(3):201–10.

    PubMed  Google Scholar 

  15. Schwendicke F, Gostemeyer G. Cost-effectiveness of root caries preventive treatments. J Dent. 2017;56:58–64.

    Article  PubMed  Google Scholar 

  16. Rošin-Grget K, Peroš K, Sutej I, Bašić K. The cariostatic mechanisms of fluoride. Acta Med Acad. 2013;42(2):179–88.

    Article  PubMed  Google Scholar 

  17. Tenuta LM, Cury JA. Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monogr Oral Sci. 2013;23:108–24.

    Article  PubMed  Google Scholar 

  18. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23(3):343–62.

    Article  PubMed  Google Scholar 

  19. Soares-Yoshikawa AL, Cury JA, Tabchoury CPM. Fluoride concentration in SDF commercial products and their bioavailability with demineralized dentine. Braz Dent J. 2020;31(3):257–63.

    Article  PubMed  Google Scholar 

  20. Rossi G, Squassi A, Mandalunis P, Kaplan A. Effect of silver diamine fluoride (SDF) on the dentin-pulp complex: ex vivo histological analysis on human primary teeth and rat molars. Acta Odontol Latinoam. 2017;30(1):5–12.

    PubMed  Google Scholar 

  21. Bimstein E, Damm D. Human primary tooth histology six months after treatment with silver diamine fluoride. J Clin Pediatr Dent. 2018;42(6):442–4.

    Article  PubMed  Google Scholar 

  22. Li Y, Liu Y, Psoter WJ, Nguyen OM, Bromage TG, Walters MA, Hu B, Rabieh S, Kumararaja FC. Assessment of the silver penetration and distribution in carious lesions of deciduous teeth treated with silver diamine fluoride. Caries Res. 2019;53(4):431–40.

    Article  PubMed  Google Scholar 

  23. Mei ML, Chu CH, Lo EC, Samaranayake LP. Fluoride and silver concentrations of silver diamine fluoride solutions for dental use. Int J Paediatr Dent. 2013;23(4):279–85.

    Article  PubMed  Google Scholar 

  24. Mei ML, Li QL, Chu CH, Yiu CK, Lo EC. The inhibitory effects of silver diamine fluoride at different concentrations on matrix metalloproteinases. Dent Mater. 2012;28(8):903–8.

    Article  PubMed  Google Scholar 

  25. Abdullah N, Al Marzooq F, Mohamad S, Abd Rahman N, Rani KGA, Chi Ngo H, Samaranayake LP. The antibacterial efficacy of silver diamine fluoride (SDF) is not modulated by potassium iodide (KI) supplements: A study on in-situ plaque biofilms using viability real-time PCR with propidium monoazide. PLoS One. 2020;15(11):e0241519.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Espíndola-Castro LF, Rosenblatt A, Galembeck A, Monteiro G. Dentin staining caused by Nano-silver fluoride: A comparative study. Oper Dent. 2020;45(4):435–41.

    Article  PubMed  Google Scholar 

  27. Patel J, Anthonappa RP, King NM. Evaluation of the staining potential of silver diamine fluoride: in vitro. Int J Paediatr Dent. 2018;28(5):514–22.

    Google Scholar 

  28. Fancher ME, Fournier S, Townsend J, Lallier TE. Cytotoxic effects of silver diamine fluoride. Am J Dent. 2019;32(3):152–6.

    PubMed  Google Scholar 

  29. Soares DG, Basso FG, Hebling J, et al. Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy. J Dent. 2014;42(2):185–98. https://doi.org/10.1016/j.jdent.2013.10.021.

    Article  PubMed  Google Scholar 

  30. Ortecho-Zuta U, de Oliveira Duque CC, de Oliveira Ribeiro RA, et al. Polymeric biomaterials maintained the esthetic efficacy and reduced the cytotoxicity of in-office dental bleaching. J Esthet Restor Dent. 2021;33(8):1139–49. https://doi.org/10.1111/jerd.12805.

    Article  PubMed  Google Scholar 

  31. Soares DG, Marcomini N, Duque CCO, et al. Increased whitening efficacy and reduced cytotoxicity are achieved by the chemical activation of a highly concentrated hydrogen peroxide bleaching gel. J Appl Oral Sci. 2019;27:e20180453. https://doi.org/10.1590/1678-7757-2018-0453.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Soares DG, Basso FG, Hebling J, et al. Effect of hydrogen-peroxide-mediated oxidative stress on human dental pulp cells. J Dent. 2015;43(6):750–6. https://doi.org/10.1016/j.jdent.2014.12.006.

    Article  PubMed  Google Scholar 

  33. de Oliveira Duque CC, Soares DG, Basso FG, et al. Influence of enamel/dentin thickness on the toxic and esthetic effects of experimental in-office bleaching protocols. Clin Oral Investig. 2017;21(8):2509–20. https://doi.org/10.1007/s00784-017-2049-7.

    Article  PubMed  Google Scholar 

  34. Soares DG, Basso FG, Hebling J, de Souza Costa CA. Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy. J Dent. 2014;42(2):185–98.

    Article  PubMed  Google Scholar 

  35. de Oliveira Duque CC, Soares DG, Basso FG, Hebling J, de Souza Costa CA. Influence of enamel/dentin thickness on the toxic and esthetic effects of experimental in-office bleaching protocols. Clinical Oral Investigation. 2017;21(8):2509–20.

    Article  Google Scholar 

  36. de Souza Costa CA, Riehl H, Kina JF, Sacono NT, Hebling J. Human pulp responses to in-office tooth bleaching. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(4):e59–64.

    Google Scholar 

  37. Kina JF, Huck C, Riehl H, et al. Response of human pulps after professionally applied vital tooth bleaching. Int Endod J. 2010;43(7):572–80. https://doi.org/10.1111/j.1365-2591.2010.01713.x.

    Article  PubMed  Google Scholar 

  38. Roderjan DA, Stanislawczuk R, Hebling J, de Souza Costa CA, Reis A, Loguercio AD. Response of human pulps to different in-office bleaching techniques: preliminary findings. Braz Dent J. 2015;26(3):242–8.

    Article  PubMed  Google Scholar 

  39. Roderjan DA, Stanislawczuk R, Hebling J, de Souza Costa CA, Soares DG, Reis A, Loguercio AD. Histopathological features of dental pulp tissue from bleached mandibular incisors. J Mater Sci Eng. 2014;6(4):178–85.

    Google Scholar 

  40. Donassollo SH, Donassollo TA, Coser S, et al. Triple-blinded randomized clinical trial comparing efficacy and tooth sensitivity of in-office and at-home bleaching techniques. J Appl Oral Sci. 2021;29:e20200794. https://doi.org/10.1590/1678-7757-2020-0794.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Santana MLC, Leal PC, Reis A, et al. Effect of anti-inflammatory and analgesic drugs for the prevention of bleaching-induced tooth sensitivity: A systematic review and meta-analysis. J Am Dent Assoc. 2019;150(10):818–29. https://doi.org/10.1016/j.adaj.2019.05.004.

    Article  Google Scholar 

  42. Ferraz NKL, Nogueira LC, Neiva IM, et al. Longevity, effectiveness, safety, and impact on quality of life of low-concentration hydrogen peroxides in-office bleaching: a randomized clinical trial. Clin Oral Investig. 2019;23(5):2061–70. https://doi.org/10.1007/s00784-018-2607-7.

    Article  PubMed  Google Scholar 

  43. Bersezio C, Martín J, Angel P, et al. Teeth whitening with 6% hydrogen peroxide and its impact on quality of life: 2 years of follow-up. Odontology. 2019;107(1):118–25. https://doi.org/10.1007/s10266-018-0372-3.

    Article  PubMed  Google Scholar 

  44. Al-Omiri MK, Al Nazeh AA, Kielbassa AM, et al. Randomized controlled clinical trial on bleaching sensitivity and whitening efficacy of hydrogen peroxide versus combinations of hydrogen peroxide and ozone. Sci Rep. 2018;8(1):1–10. https://doi.org/10.1038/s41598-018-20878-0.

    Article  Google Scholar 

  45. Bortolatto JF, Trevisan TC, Bernardi PSI, et al. A novel approach for in-office tooth bleaching with 6% H2O2/TiO_N and LED/laser system—a controlled, triple-blinded, randomized clinical trial. Lasers Med Sci. 2016;31(3):437–44. https://doi.org/10.1007/s10103-016-1866-2.

    Article  PubMed  Google Scholar 

  46. Yao S, Yuan S, Xu J, et al. A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite. Appl Clay Sci. 2006;33(1):35–42. https://doi.org/10.1016/j.clay.2006.03.006.

    Article  Google Scholar 

  47. Ortecho-Zuta U, de Oliveira Duque CC, Leite ML, et al. Effects of enzymatic activation of bleaching gels on hydrogen peroxide degradation rates, bleaching effectiveness, and cytotoxicity. Oper Dent. 2019;44(4):414–23. https://doi.org/10.2341/17-276-L.

    Article  PubMed  Google Scholar 

  48. de Souza Costa CA, Hebling J, Hanks CT. Current status of pulp capping with dentin adhesive systems: a review. Dent Mater. 2000;16:188–97.

    Article  Google Scholar 

  49. Schweikl H, Hiller KA, Bolay C, Kreissl M, Kreismann W, Nusser A, et al. Cytotoxic and mutagenic effects of dental composite materials. Biomaterials. 2005;26:1713–9.

    Article  PubMed  Google Scholar 

  50. de Souza Costa CA, Nascimento ABL, Teixeira HM. Response of human pulps following acid conditioning and application of a bonding agent in deep cavities. Dent Mater. 2002;18:543–55.

    Article  PubMed  Google Scholar 

  51. de Souza Costa CA, Nascimento ABL, Teixeira HM, Fontana UF. Response of human pulps capped with a self-etching adhesive system. Dent Mater. 2001;17(3):230–40. https://doi.org/10.1016/s0109-5641(00)00076-2.

  52. Hebling J, Giro EM, de Souza Costa CA. Biocompatibility of an adhesive system applied to exposed human dental pulp. J Endod. 1999;25(10):676–82.

    Google Scholar 

  53. de Souza Costa CA, Teixeira HM, Nascimento ABL, Hebling J. Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J Biomed Mater Res B Appl Biomater. 2007;81(1):175–84. https://doi.org/10.1002/jbm.b.30651.

  54. de Souza Costa CA, Ribeiro AP, Giro EM, Randall RC, Hebling J. Pulp response after application of two resin modified glass ionomer cements (RMGICs) in deep cavities of prepared human teeth. Dent Mater. 2011;27(7):e158–70.

    Google Scholar 

  55. Soares DG, Basso FG, Scheffel DL, Giro EM, de Souza Costa CA, Hebling J. Biocompatibility of a restorative resin modified glass ionomer cement applied in very deep cavities prepared in human teeth. Gen Dent. 2016;64(4):33–40.

    PubMed  Google Scholar 

  56. Ribeiro APD, Sacono NT, Soares DG, Bordini EAF, de Souza Costa CA, Hebling J. Human pulp response to conventional and resin-modified glass ionomer cements applied in very deep cavities. Clin Oral Investig. 2020;24(5):1739–48. https://doi.org/10.1007/s00784-019-03035-3.

    Article  PubMed  Google Scholar 

  57. Nascimento ABL, Fontana UF, Teixeira HM, de Souza Costa CA. Biocompatibility of a resin-modified glass-ionomer cement applied as pulp capping in human teeth. Am J Dent. 2000;13(1):28–34.

    PubMed  Google Scholar 

  58. Stringhini E Jr, Santos MGC, Oliveira LB, Mercadé M. MTA and biodentine for primary teeth pulpotomy: a systematic review and meta-analysis of clinical trials. Clin Oral Investig. 2019;23(4):1967–76. https://doi.org/10.1007/s00784-018-2616-6. Epub 2018 Sep 20.

  59. Ng FK, Messer LB. Mineral trioxide aggregate as a pulpotomy medicament: an evidence-based assessment. Eur Arch Paediatr Dent. 2008;9:58–73.

    Article  PubMed  Google Scholar 

  60. American Academy of Pediatric Dentistry. Guideline on pulp therapy for primary and immature permanent tooth. Clinical guidelines – reference manual 2016-2017. Pediatr Dent. 2016;38:280–8.

    Google Scholar 

  61. de Souza Costa CA. Biological aspects of dental materials. J Adhes Dent. 2020;22(5):540–4.

    Google Scholar 

  62. de Souza Costa CA, Hebling J, Scheffel DL, Soares DG, Basso FG, Ribeiro AP. Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater. 2014;30(7):769–84.

    Article  PubMed  Google Scholar 

  63. Soares DG, Anovazzi G, Bordini EAF, Zuta UO, Silva Leite MLA, Basso FG, Hebling J, de Souza Costa CA. Biological analysis of simvastatin-releasing chitosan scaffold as a cell-free system for pulp-dentin regeneration. J Endod. 2018;44(6):971–976.e1. https://doi.org/10.1016/j.joen.2018.02.014.

    Article  PubMed  Google Scholar 

  64. Soares DG, Bordini EAF, Bronze-Uhle ES, Cassiano FB, Silva ISP, Gallinari MO, Matheus HR, Almeida JM, Cintra LTA, Hebling J, de Souza Costa CA. Chitosan-calcium-simvastatin scaffold as an inductive cell-free platform. J Dent Res. 2021;100(10):1118–26. https://doi.org/10.1177/00220345211024207.

    Article  PubMed  Google Scholar 

  65. Bordini EAF, Cassiano FB, Bronze-Uhle ES, Alamo L, Hebling J, de Souza Costa CA, Soares DG. Chitosan in association with osteogenic factors as a cell-homing platform for dentin regeneration: analysis in a pulp-in-a-chip model. Dent Mater. 2022;38(4):655–69. https://doi.org/10.1016/j.dental.2022.02.004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto de Souza Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hebling, J., Mendes-Soares, I.P., de Oliveira Ribeiro, R.A., de Souza Costa, C.A. (2023). Pulp Response to Clinical Procedures and Dental Materials. In: Fuks, A.B., Moskovitz, M., Tickotsky, N. (eds) Contemporary Endodontics for Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-031-23980-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23980-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23979-3

  • Online ISBN: 978-3-031-23980-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics